ГОСТы

ГОСТ Р 51379-99. Энергосбережение. Энергетический паспорт промышленного потребителя топливно-энергетических ресурсов

 

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р 51379-99

Энергосбережение.

Энергетический паспорт промышленного потребителя

топливно-энергетических ресурсов.

Основные положения. Типовые формы.

 

Energy conservation.

Power engineering, certificate of fuel-energy resources consumer.

Basic regulations

 

Введение в действие в августе 2000г

 

1. Область применения

Настоящий стандарт устанавливает основные требования к построению, изложению и содержанию энергетического паспорта потребителя топливно-энергетических ресурсов (ТЭР) с целью определения фактического использования топливно-энергетических ресурсов, оценки показателей энергетической эффективности и формирования мероприятий по энергосбережению.

Обязательность разработки и ведения энергетического паспорта потребителя топливно-энергетических   ресурсов   определяется   нормативно-правовыми   актами, принимаемыми  федеральными  органами  исполнительной  власти  и  органами исполнительной власти субъектов Российской Федерации.

Стандарт используется органами государственного энергетического надзора при энергетических обследованиях потребителей энергоресурсов и оценке эффективности использования ТЭР.

 

 2. Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы:

ГОСТ Р 1.0-92 "Государственная система стандартизации Российской Федерации. Основные положения".

ГОСТ 30166-95 "Ресурсосбережение. Основные положения".

 

3. Определения.

В настоящем стандарте используются следующие термины с соответствующими определениями:

энергосбережение  -  реализация правовых, организационных, научных, производственных, технических и экономических мер, направленных на эффективное использование энергетических ресурсов;

топливно-энергетический ресурс - носитель энергии, включая топливо, который

используется в настоящее время или может быть полезно использован в перспективе;

эффективное использование энергетических ресурсов - достижение экономически оправданной эффективности использования энергетических ресурсов при существующем уровне развития техники и технологий и соблюдении требований к охране окружающей природной среды;

потребитель топливно-энергетических ресурсов - физическое или юридическое лицо, осуществляющее пользование топливом, электрической энергией (мощностью) и (или) тепловой энергией (мощностью);

энергетический паспорт потребителя топливно-энергетических ресурсов -нормативный документ, содержащий показатели эффективности использования топливно-энергетических ресурсов, потребляемых в процессе хозяйственной деятельности объектами производственного назначения независимо от организационных форм и форм собственности, а также энергосберегающие мероприятия.

 

4. Общие положения.

4.1. Энергетический паспорт потребителя топливно-энергетических ресурсов разрабатывается на основе энергетического обследования, проводимого с целью оценки эффективности использования топливно-энергетических ресурсов, разработки и реализации энергосберегающих мероприятий.

4.2. Разработку и ведение паспорта обеспечивает потребитель    топливно-энергетических ресурсов.

4.3. Энергетические обследования эффективности использования ТЭР проводятся:

потребителями   топливно-энергетических   ресурсов   (собственные внутренние обследования);

энергоаудиторскими организациями, работающими по контракту; органами, осуществляющими надзор и контроль за эффективностью использования топливно-энергетических ресурсов.

 4.4. Объектами энергетического обследования являются:

производственное   оборудование,   машины,   установки,   агрегаты, потребляющие ТЭР, преобразующие энергию из одного вида в другой для производства продукции, выполнения работ:

технологические процессы, связанные с преобразованием и потреблением топлива, энергии и энергоносителей:

процессы, связанные с расходованием ТЭР на вспомогательные нужды (освещение, отопление, вентиляцию).

4.5. Обновление информации в энергетическом паспорте проводится в соответствии с действующими нормативно-правовыми актами в области контроля за эффективностью использования топливно-энергетических ресурсов.

4.6. Ответственность за достоверность данных энергетического паспорта несут лица, проводившие энергетические обследования и административное руководство потребителя ТЭР.

4.7. Энергетический паспорт потребителя топливно-энергетических ресурсов должен храниться на предприятии, в территориальном органе государственного энергетического надзора и в организации, проводившей энергоаудит.

4.8. Гриф энергетического паспорта определяется руководством потребителя топливно-энергетических ресурсов в установленном порядке.

 

5. Структура и содержание энергетического паспорта потребителя топливно-энергетических ресурсов.

5.1Энергетический паспорт состоит из следующих разделов:

 5.1. 1 Общие сведения о потребителе топливно-энергетических ресурсов.

 5.1.2. Сведения о потреблении топливно-энергетических ресурсов:

 -сведения об общем потреблении энергоносителей;

 -сведения о потреблении электроэнергии;

 -сведения о потреблении тепловой энергии;

 -сведения о потреблении котельно-печного топлива;

 -сведения о потреблении моторного топлива.

5.1.3. Сведения об эффективности использования топливно-энергетических ресурсов.

5.1.4. Мероприятия по энергосбережению и повышению эффективности использования топливно-энергетических ресурсов.

5.1.5. Выводы.

Заключительный раздел энергетического паспорта  потребителя ТЭР должен включать  перечень зафиксированных при обследовании потребителя фактов непроизводительных расходов ТЭР с указанием их величины в стоимостном и натуральном выражении;

·         предлагаемые направления повышения эффективности использования  ТЭР с оценкой  экономии  последних в стоимостном и натуральном выражении с указанием затрат,  сроков внедрения и окупаемости;

·         -количественная оценка снижения уровня непроизводительных расходов ТЭР за счет внедрения энергосберегающих мероприятий;

·         беззатратных и низкозатратных;

·         среднезатратных;

·         высокозатратных.

 

5.2 Типовые формы энергетического паспорта потребителя топливно-энергетических ресурсов включают:

5.2.1.  Титульный лист энергетического паспорта потребителя топливно-энергетических ресурсов (приложении А).

5.2..2. Общие сведения о потребителе топливно-энергетических ресурсов приведенные в форме (приложениях Б), содержащей  информацию о наименовании, реквизитах предприятия, объеме производства основной и вспомогательной продукции, численности персонала и другие сведения о предприятии.

5.2..3. Сведения об общем потреблении энергоносителей приведенные в форме (приложении В), содержат информацию о годовом потреблении и о коммерческом учете потребления всех видов энергоносителей, используемых потребителем топливно-энергетических ресурсов.

5.2.4. Сведения о потреблении электроэнергии приведены в формах  (приложениях Г, Д, Е, Ж, И, К), содержащих информацию  о трансформаторных  подстанциях,  установленной мощности электроприемников по направлениям использования с краткой энергетической характеристикой энергоемкого оборудования,  содержащих информацию о собственном  производстве электрической и тепловой энергии  (собственной теплоэлектростанции), а также годовой баланс потребления электроэнергии.

5.2.5. Сведения о потреблении тепловой энергии приведенные  в  формах (приложения Л, М, Н, С), содержащих информацию о составе и работе котельных (котельных агрегатах, входящих в состав собственных ТЭС), сведения о  технологическом оборудовании, использующем тепловую энергию, расчетно-нормативном потреблении теплоэнергии, а также годовой баланс потребления теплоэнергии.

5.2.6. Сведения о потреблении котельно-печного и моторного топлива, об использовании  вторичных энергоресурсов, альтернативных топлив, возобновляемых источников энергии,  приведенные в формах (приложения Р, С, Т, У, Ф), содержат информацию о характеристиках топливоиспользующих агрегатов, об использовании моторных топлив транспортными средствами и др. , а также балансы потребления котельно-печного и моторного топлива.

5.2.7.  Сведения о показателях эффективности использования топливно-энергетических ресурсов приведенные в форме (приложение Х) , содержащей информацию об удельных расходах ТЭР.

5.2.8. Сведения об энергосберегающих мероприятиях приведены в форме (приложение Ц), , содержащей информацию об энергоэффективных мероприятиях по каждому виду топливно-энергетических ресурсов.

Представленные в стандарте типовые формы энергетического паспорта используют в качестве базовых. В зависимости от принадлежности потребителя к той или иной отрасли экономики, особенностей и специфики производственного оборудования и технологических процессов типовые формы энергетического паспорта по рекомендациям Федерального органа исполнительной власти, осуществляющего контроль и надзор за эффективным использованием топливно-энергетических ресурсов, могут быть дополнены и утверждены в составе соответствующего нормативного документа.

5.3 При заполнении энергетического паспорта промышленного потребителя  ТЭР могут быть  использованы нормативные и методические материалы, представоенные в приложении Ч.

 

ВложениеРазмер
Р 51379-1999-Энергетический паспорт пром. потребителя.doc177 КБ

ГОСТ Р 51749—2001. Энергосбережение. Энергопотребляющее оборудование общепромышленного применения

ГОСТ Р 51749—2001

 

УДК 621.002.5:006.354                                                            Группа Е01, E02

 

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Энергосбережение

ЭНЕРГОПОТРЕБЛЯЮЩЕЕ ОБОРУДОВАНИЕ ОБЩЕПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ

Виды. Типы. Группы. Показатели энергетической эффективности. Идентификация

 

Energy conservation. Energy consuming equipment in general industrial application.

Kindes. Types. Groups. Indicators of energy efficiency. Identification

 

ОКСТУ 3103

              3104

              3403

              3404

ОКС 27.010

Дата введения 2002—01—01

 

 

Предисловие

 

1 РАЗРАБОТАН ФГУ «Российское агентство энергоэффективности» Минэнерго России

ВНЕСЕН ФГУ «Российское агентство энергоэффективности» Минэнерго России

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 21 мая 2001 г. № 210-ст

3 ВВЕДЕН ВПЕРВЫЕ

 

Введение

Энергосбережение является одним из ключевых направлений энергетической политики России в процессе реализации ФЦП «Энергосбережение» [1], разработанной на основе Закона Российской Федерации «Об энергосбережении».

В Статье 4 Закона РФ «Об энергосбережении» установлены принципы энергосберегающей политики государства, к числу которых относятся:

- приоритет эффективного использования энергетических ресурсов;

- осуществление государственного надзора за эффективным использованием энергетических ресурсов;

- включение в государственные стандарты на оборудование, материалы и конструкции, транспортные средства показателей их энергоэффективности.

Соответствие показателей энергоэффективности действующего энергетического оборудования нормативным значениям ПЭЭ подтверждают органы государственного энергетического надзора [8] при сертификации энергооборудования, потребляющего за год более 6000 т условного топлива или более 1000 т моторного топлива (статья 10 Закона РФ «Об энергосбережении»).

В свою очередь, выполнение задания ФЦП «Энергосбережение» в 2000 г. и в последующие годы также должно базироваться на развитой нормативно-методической основе [2], то есть на стандартах, имеющих статус межгосударственных или российских и устанавливающих номенклатуру показателей энергетической эффективности по видам энергопотребляющего оборудования, материалов, конструкций и транспортных средств.

Настоящий стандарт устанавливает:

- виды и подвиды энергопотребляющего оборудования;

- типы энергопотребляющего оборудования;

- группы и подгруппы энергопотребляющего оборудования;

- основные показатели энергетической эффективности потребления топливно-энергетических ресурсов (ТЭР) для оборудования общепромышленного применения.

Следует отметить, что в нормативных правовых актах [3] отсутствует термин «оборудование», в связи с чем его решено установить в настоящем стандарте с идентификацией активно потребляющего, преобразующего ТЭР и пассивно передающего ТЭР оборудования, а также строительных сооружений (в т. ч. материалов и конструкций).

Положения настоящего стандарта позволят целенаправленно и обоснованно вносить показатели энергоэффективности в нормативные документы на энергопотребляющее оборудование и решать большое количество инженерно-технических, научно-исследовательских, технико-экономических задач, направленных на реализацию в сфере народного хозяйства энергетической политики России в отношении:

- повышения энергетической эффективности энергопотребляющего оборудования общепромышленного применения и технологических процессов;

- повышения энергетической эффективности ТЭР, расходующих свой накопленный (природный) или наведенный техногенными способами энергетический потенциал;

- уменьшения потерь ТЭР в народном хозяйстве;

- разработки нормативов энергосбережения ТЭР;

- планирования и управления энергосбережением ТЭР на всех стадиях жизненного цикла энергопотребляющего оборудования.

Настоящий стандарт предназначен для использования специалистами, участвующими в разработке проектной, нормативной и технологической документации, связанной с добычей, производством, хранением, транспортированием, использованием первичных и вторичных энергетических ресурсов, при разработке, эксплуатации, ремонте, списании и ликвидации (как последней стадии жизненного цикла продукции — с утилизацией техногенной и удалением опасной составляющих) энергопотребляющего оборудования, а также специалистами — разработчиками нормативных документов, оборудования, технологий, методов контроля, испытаний, сертификации, лицензирования, страхования в обеспечение энергосбережения в отраслях промышленности.

Настоящий стандарт является одним из комплекса нормативных документов России «Энергосбережение», призванных в дополнение ГОСТ Р 51387 и ГОСТ Р 51541 создать развитую и энергоэффективную нормативную базу для проведения работ по энергосбережению на предприятиях различных отраслей народного хозяйства.

 

 

1 Область применения

Настоящий стандарт устанавливает идентифицированные виды и подвиды, типы, группы и подгруппы основного энергопотребляющего оборудования, номенклатуру соответствующих показателей энергетической эффективности и распространяется на энергопотребляющее оборудование общепромышленного применения, используемое при добыче, хранении, транспортировании, передаче, технологическом преобразовании традиционных топливно-энергетических ресурсов (далее — ТЭР) и возобновляемых ТЭР в народном хозяйстве Российской Федерации.

Стандарт не распространяется на энергопотребляющие объекты военной техники, ядерные, химические и биологические энергопотребляющие объекты.

Положения, установленные в настоящем стандарте, предназначены для применения в соответствии с действующим законодательством расположенными на территории РФ предприятиями, организациями, региональными и другими объединениями (далее — предприятия) независимо от форм собственности и подчинения, а также органами управления РФ, имеющими прямое отношение к энергопотреблению и энергосбережению.

Положения настоящего стандарта применяют в научно-технической, учебной и справочной литературе, при планировании разработок энергопотребляющего оборудования и установлении в нормативных документах показателей энергоэффективности потребления ТЭР.

 

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3.1109—82 Единая система технологической документации. Термины и определения основных понятий

ГОСТ 19431—84 Энергетика и электрификация. Термины и определения

ГОСТ Р 51379—99 Энергосбережение. Энергетический паспорт промышленного потребителя топливно-энергетических ресурсов. Основные положения. Типовые формы

ГОСТ Р 51380—99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям. Общие требования

ГОСТ Р 51387—99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ Р 51388—99 Энергосбережение. Информирование потребителей об энергоэффективности изделий бытового и коммунального назначения. Общие требования

ГОСТ Р 51541—99 .Энергосбережение. Энергетическая эффективность. Состав показателей. Общие положения

 

3 Определения и сокращения

3.1 В настоящем стандарте применяют термины с соответствующими определениями, приведенными в ГОСТ 3.1109, ГОСТ 19431, ГОСТ Р 51387, ГОСТ Р 51541, [3], а также следующие:

3.1.1 энергосбережение: По ГОСТ Р 51387.

3.1.2 энергоноситель: По ГОСТ Р 51387.

3.1.3 топливно-энергетический ресурс: По ГОСТ Р 51387.

3.1.4 вторичный энергетический ресурс: По ГОСТ Р 51387.

3.1.5 энергоемкость производства продукции: По ГОСТ Р 51387.

3.1.6 эффективное использование энергетических ресурсов: По ГОСТ Р 51541.

 

Примечание — Определяют в регламентированных условиях использования энергетических ресурсов.

 

3.1.7 показатель энергетической эффективности; ПЭЭ: По ГОСТ Р 51387.

3.1.8 показатель экономичности энергопотребления изделия: По ГОСТ Р 51387.

 

Примечание — В настоящем стандарте термин «энергопотребление» является родовым, а «энергорасходование» и остальные — видовыми.

 

3.1.9 показатель энергосбережения: По ГОСТ Р 51541.

 

Примечание — Определяют в регламентированных условиях использования энергетических ресурсов.

 

3.1.10 возобновляемые топливно-энергетические ресурсы: По ГОСТ Р 51387.

3.1.11 оборудование: Необходимые технические средства для обеспечения изготовления изделий [4].

3.1.12 технологическое оборудование: Орудия производства, в которых для выполнения определенной части технологического процесса размещаются материалы или заготовки, средства воздействия на них и, при необходимости, источники энергии [4].

3.1.13 энергоустановка: По ГОСТ 19431.

3.1.14 экономичность энергопотребления изделия (активного оборудования) при функционировании: Характеристика затрат оборудованием ТЭР в регламентированных режимах функционирования.

3.1.15 показатели энергетической эффективности пассивного оборудования при использовании: Характеристики свойств изоляционных и электропроводящих материалов электрических линий и сетей промышленного, коммунального назначения, изоляционных и конструкционных (несущих) материалов трубопроводов сохранять и передавать электрическую или тепловую энергию, топливо, энергоносители на различные расстояния в регламентированных режимах функционирования; а также характеристика целенаправленно запасенной энергии при изготовлении оборудования и/или содержащейся в нем и определяющей его энергетический потенциал для последующего использования по назначению в регламентированных режимах функционирования.

3.1.16 экономичность сбережения тепловой энергии изделием (сооружением, строительным материалом, конструкцией) при использовании: Характеристика суммарного количества потерь при передаче тепловой энергии в регламентированных условиях применения.

 

Примечания

1 Эта группа характеризует свойства строительного материала, конструкции, сооружения сберегать (или терять) тепловую энергию в регламентированных условиях применения.

2 К этой группе характеристик относят также показатели теплопроводности (теплосопротивления) ограждающих (строительных) конструкций.

 

3.1.17 теплотворная способность углеводородных топлив: Суммарное количество энергии, которой обладают природные углеводородные топлива, высвобождая ее в регламентированных условиях.

 

Примечание — Теплотворную способность топлива выражают в мегаджоулях на килограмм (МДж/кг), в мегаджоулях на кубический метр (МДж/м3).

 

3.1.18 норматив расхода топливно-энергетических ресурсов (технический норматив): Научно и технически обоснованная величина нормы расхода энергии (топлива), устанавливаемая в нормативной и технологической документации на конкретное изделие, характеризующая предельно допустимое значение потребления энергии (топлива) на единицу выпускаемой продукции или в регламентированных условиях использования энергетических ресурсов.

3.1.19 нормативный энергетический эквивалент; НЭЭ: Показатель, характеризующий народнохозяйственный уровень прямых общих затрат первичной энергии или работы на единицу потребляемого энергоресурса (топлива, тепловой, электрической энергии).

3.1.20 топливно-энергетический эквивалент; ТЭЭ: Показатель, характеризующий народнохозяйственный уровень прямых общих затрат первичной энергии или работы на единицу потребляемого топливно-энергетического ресурса.

3.1.21 удельная теплота сгорания (топлива): Суммарное количество энергии, высвобождаемое в регламентированных условиях сжигания топлива.

3.2 В настоящем стандарте применяют следующие сокращения:

ИСО — Международная организация по стандартизации;

КПД — коэффициент полезного действия;

ЛЭП — линия электропередачи;

МЭК — Международная электротехническая комиссия;

ОС — окружающая среда;

ПДВ — предельно допустимые выбросы (опасных газообразных веществ);

ПДК — предельно допустимая концентрация;

ПДС — предельно допустимые сбросы (опасных жидкостей);

ПЭЭ — показатель(и) энергетической эффективности;

ТП — технологический процесс;

ТЭК — топливно-энергетический комплекс;

ТЭР — топливно-энергетические ресурсы;

ТЭС — теплоэлектростанция;

ФЦП — Федеральная целевая программа.

 

4 Общие положения

4.1 Энергопотребляющее оборудование общепромышленного применения потребляет, преобразует, сохраняет, транспортирует поступающие из окружающей среды следующие виды ТЭР:

- топливо котельно-печное и моторное;

- энергию электрическую (и электромагнитную);

- энергию тепловую;

- энергию возобновляемых источников (ветра, водных потоков, приливов и отливов, а также энергию солнечную, биомассы, геотермальную);

- комбинированные.

4.2 Целью настоящего стандарта является установление:

- видов и подвидов энергопотребляющего оборудования (применительно к характеру обращения с ТЭР и их видам);

- типов (по активной, пассивной или сберегающей формам потребления ТЭР);

- групп и подгрупп (по технологической и отраслевой принадлежности);

- основных показателей энергетической эффективности потребления ТЭР для основного энергопотребляющего оборудования общепромышленного применения, бытового оборудования, а также для сооружений, включая материалы и конструкции.

4.3 Оборудование общепромышленного назначения, относящееся к энергоустановкам, подразделяют на три типа: активно добывающие, расходующие, использующие традиционные (невозобновляемые) ТЭР и нетрадиционные (от возобновляемых источников энергии), пассивно проводящие, передающие (согласно ГОСТ Р 51541), транспортирующие ТЭР, а также сооружения, сберегающие тепловую энергию.

4.4 В настоящем стандарте энергопотребляющее оборудование общепромышленного применения идентифицировано по следующим видам (и соответствующим типам): энергодобывающее (активное), энергорасходующее ТЭР (активное), энергоиспользующее возобновляемые ТЭР (активное), электропроводящее (пассивное), энергопередающее (пассивное), топливотранспортирующее (пассивное), теплосберегающее (сооружения).

4.5 Виды оборудования приведены в соответствии с видами ТЭР.

4.6 Типы оборудования соотнесены с соответствующими типами энергопотребления.

4.7 Основная номенклатура показателей энергоэффективности для оборудования соответствующих видов, типов и групп представлена в приложении А.

 

5. Идентификация видов и подвидов, типов, групп и подгрупп энергопотребляющих объектов (оборудования, сооружений) общепромышленного применения

5.1 Виды и типы энергопотребляющих объектов, включая оборудование и сооружения, приведены в таблице 5.1.

 

Таблица 5.1

Вид энергопотребляющего оборудования

Тип энергопотребляющего объекта (оборудование и сооружения)

1 Энергодобывающее (для ТЭР, кроме возобновляемых)

Активное

2 Энергорасходующее ТЭР

Активное

3 Энергоиспользующее возобновляемые ТЭР

Активное

4 Электропроводящее

Пассивное

5 Энергопередающее (тепло, топливо)

Пассивное

6 Топливотранспортирующее

Пассивное

7 Теплосберегающее

Сооружения (конструкции, материалы)

 

5.2 Подвиды энергопотребляющего оборудования общепромышленного применения укрупненно идентифицированы в 5.2.1—-5.2.3.

5.2.1 К числу основных потребителей котельно-печного и моторного топлив относят следующие подвиды оборудования общепромышленного применения, подлежащего нормированию по требованиям энергосбережения:

- электростанции;

- котельные установки;

- воздухонагреватели;

- агломерационные машины;

- печи для нагрева (сушилки), крекинга;

- печи (термические, для подогрева шихты, мартеновские, коксовые);

- кауперы;

- автоклавы, установки с кипящим слоем;

- вулканизаторы;

- установки для производства полистирола, полихлорвинила, поливинилацетата, карбамидных полимеров;

- агрегаты (поточные линии) для выработки волокон;

- бытовая техника (плиты, горелки и т. п.);

- газоперекачивающие устройства;

- двигатели внутреннего сгорания;

- двигатели наружного сгорания (паровозные топки, к примеру);

- газогенераторные устройства.

5.2.2 К числу основных потребителей электрической энергии относят следующие подвиды оборудования общепромышленного применения, подлежащего нормированию по требованиям энергосбережения:

- ферросплавные печи;

- станы горячей и холодной прокатки черных и цветных металлов;

- электролизеры;

- установки для плавки;

- электрические печи для плавки (сопротивления, электродуговые сталеплавильные, индукционные, вакуумные индукционные);

- трубопрокатные станы;

- установки для полимеризации, машины для резки;

- установки для производства полистирола, полихлорвинила, поливинилацетата, карбамидных полимеров;

- установки для производства аммиака;

- агрегаты (поточные линии) для выработки волокон;

- установки для производства кислорода;

- установки для варки целлюлозы;

- оборудование для передачи и распределения электрической энергии и/или изменения ее параметров (трансформаторы, статические преобразователи);

- оборудование для электроотопления жилых и общественных зданий;

- оборудование для освещения жилых и промышленных зданий;

- оборудование для уличного освещения;

- электрические двигатели;

- электрогенераторы;

- бытовое и аналогичное электрооборудование (холодильники, плиты, утюги и т. п.).

 

Примечание — Бытовое оборудование может использоваться в производственных процессах, например на малых предприятиях, в связи с чем оно также идентифицировано в настоящем стандарте.

 

5.2.3 К подвидам оборудования общепромышленного применения, потребляющего тепловую энергию и подлежащего нормированию по требованиям энергосбережения, относят:

- установки непрерывного коксования;

- автоклавы, установки с кипящим слоем;

- установки полимеризации, машины для резки;

- установки для производства полистирола, полихлорвинила, поливинилацетата, карбамидных полимеров;

- установки синтеза спиртов;

- колонны синтеза и фракционирования;

- агрегаты (поточные линии) для выработки волокон;

- установки для плавки и электролизеры;

- турбины паровые;

- электропечи, агломерационные машины;

- установки для варки целлюлозы;

- машины для производства бумаги и картона;

- жилые здания;

- промышленные здания.

5.3 На предприятиях, как правило, используют подвиды оборудования общепромышленного применения, потребляющие различные виды ТЭР (4.1).

5.4 Для целей энергосбережения различают три типа энергопотребляющего оборудования общепромышленного применения:

- активное оборудование, потребляющее ТЭР в процессах их добычи, преобразования и для изготовления изделий (раздел 5 ГОСТ Р 51541);

- пассивное оборудование, служащее для передачи тепловой, электрической энергии и энергоносителей (раздел 6 ГОСТ Р 51541), включая трубопроводы промышленного и коммунального назначения, предназначенные для транспортирования нефти, газа, теплоносителей; линии электропередач, электрические сети промышленного и коммунального назначения; оборудование для аккумулирования и расходования электрической энергии, а также оборудование, служащее для хранения и транспортирования ТЭР (например, цистерны);

- сооружения, к которым относят ограждающие (строительные) конструкции и материалы.

 

Примечания

1 Оборудование, активно потребляющее ТЭР, как правило, расходует энергию, накопленную в невозобновляемом углеводородном топливе и/или поступающую от возобновляемых источников энергии.

2 К пассивному оборудованию относят:

- трубопроводы (газо- и нефтепроводы), теплообменники промышленного назначения;

- трубопроводы коммунального назначения (газо- и водопроводы, канализация);

- электропроводящие сооружения (включая материалы) для линий электропередач и электрических сетей промышленного и коммунального назначения;

- естественные (природные) и искусственные хранилища нефтепродуктов, газа.

3 К пассивному оборудованию, накапливающему и расходующему энергию, относят:

- гальванические элементы;

- аккумуляторы;

- электрохимические генераторы.

4 К сооружениям, предотвращающим (в идеале) или сокращающим потери ТЭР, относят конструкции и элементы строительных (ограждающих) конструкций, содержащие теплоизоляционные, диэлектрические (строительные) материалы, способствующие или препятствующие передаче, сохранению тепловой энергии при эксплуатации сооружений по функциональному назначению.

 

5.5 Основные группы энергопотребляющего оборудования общепромышленного применения взаимоувязаны с технологическими процессами:

а) добычи нефти, газа, угля и др. видов сырья;

б) транспортирования нефти и газа по трубопроводам;

в) получения электрической энергии;

г) передачи и распределения электрической энергии по линиям электропередач и электрическим сетям;

д) выплавки черных и цветных металлов;

е) получения продуктов нефтехимической переработки;

ж) получения химических веществ и соединений;

и) металлообработки;

к) автотранспортных, железнодорожных, речных, морских и воздушных перевозок;

л) получения цемента;

м) сельскохозяйственных работ;

н) получения деловой древесины;

п) получения целлюлозы, бумаги, картона и др.

5.5.1 Наиболее топливоемкими технологическими процессами являются:

- выплавка чугуна;

- дутье в доменных печах.

5.5.2 Наиболее электроемким является технологическое оборудование общепромышленного назначения (станы, установки, электролизеры, печи, агрегаты).

5.5.3 Наиболее теплоемкими являются технологические процессы прокатки черных металлов.

5.6 Для целей кодирования результатов анализа рационального использования оборудованием общепромышленного применения электрической и тепловой энергии использован перечень отраслей [12], представленный в таблице 5.2.

 

Примечания

1 Под отраслью понимают отрасль экономики, представляющую собой совокупность всех производственных единиц, осуществляющих преимущественно одинаковые или сходные виды производственной деятельности [14].

2 Названия ряда отраслей соотнесены с соответствующими группами оборудования (5.5).

3 Пометка об отношении отраслей промышленности к ТЭК сделана согласно [13].

4 В предпоследней графе таблицы 5.2 произведено сопоставление с данными 5.5.

 

Таблица 5.2

Наименование отрасли

Код отрасли

ТЭК

Группа по 5.5

Код ОКП

1 Электроэнергетика

1110

+

б), ж)

01 0000

 

 

 

 

31 0000

Примечание — Включая передачу, распределение электрической энергии по линиям электропередач и электрическим сетям

 

 

 

34 0000

2 Нефтедобывающая промышленность

1121

+

а)

02 4000

3 Нефтеперерабатывающая промышленность

1122

+

е)

02 5000

4 Газовая промышленность

1123

+

а)

02 7000

5 Угольная промышленность

1130

+

а)

03 0000

6 Прочие виды топливной промышленности

1171

+

 

03 0000

7 Черная металлургия

1211

 

д)

08 0000

 

 

 

 

09 0000

8 Цветная металлургия

1220

 

д)

17 0000

 

 

 

 

18 0000

9 Химическая, нефтехимическая

1300

 

е),

22 0000

промышленность

 

 

ж)

24 0000

 

 

 

 

36 0000

10 Машиностроение и металлообработка

1400

 

и)

31 0000

 

 

 

 

33 0000

 

 

 

 

36 0000

 

 

 

 

41 0000

 

 

 

 

47 0000

 

 

 

 

48 0000

11 Деревообрабатывающая и целлюлозно-

1500

 

н),

38 0000

бумажная

 

 

п)

53 0000

 

 

 

 

54 0000

12 Промышленность строительных

1610

 

л)

57 0000

материалов

 

 

 

58 0000

 

 

 

 

59 0000

13 Легкая промышленность

1700

 

 

51 0000

14 Пищевая промышленность

1800

 

 

51 0000

15 Другие виды промышленного производства

1970

 

 

 

16 Сельское хозяйство

2000

 

м)

97 0000

17 Железнодорожный транспорт

5111

 

к)

31 8000

18 Трубопроводный транспорт (аппаратура)

5113

 

б)

37 0000

19 Связь (в т. ч. продукция кабельная)

5200

 

г)

35 0000

 

 

 

 

65 0000

 

 

 

 

66 0000

20 Строительство

6000

 

 

48 0000

21 Жилищно-коммунальное хозяйство

9000

 

 

49 0000

22 Прочие отрасли, включая:

9990

 

 

 

- автотранспорт

 

 

к)

45 0000

- речной и морской транспорт

 

 

к)

74 0000

- воздушный транспорт

 

 

к)

75 0000

 

5.6.1 Важные для деятельности по документированию с целью энергосбережения подгруппы энергопотребляющих объектов (включая оборудование бытового и промышленного применения, конструкции и материалов) в соотнесении с кодами ОКП [13] представлены в таблице 5.3. Более подробно соответствующие виды оборудования и материалов перечислены в приложении А ГОСТ Р 51388.

 

Таблица 5.3

Наименование подгрупп энергопотребляющих объектов (оборудования, конструкций и материалов) по отраслям хозяйства

Код ОКП

1 Машины электрические

33 0000

2 Оборудование и материалы электротехнические

34 0000

3 Изделия автомобильной промышленности

45 0000

4 Тракторы и сельскохозяйственные машины

47 0000

5 Продукция строительного, дорожного и коммунального машиностроения

48 0000

6 Оборудование санитарно-техническое (кроме оборудования для вентиляции и кондиционирования)

49 0000

7 Оборудование технологическое для легкой и пищевой промышленности и бытовые приборы

51 0000

8 Материалы строительные, кроме сборных железобетонных конструкций и деталей

57 0000

9 Конструкции и детали сборные железобетонные (включая армированные изделия из бесцементных бетонов)

58 0000

10 Изделия из стекла, фарфора и фаянса (включая строительное стекло и стекловолокно)

59 0000

 

5.7 Группы и подгруппы оборудования, активно потребляющего возобновляемые источники энергии (энергию ветра, водных потоков, приливов и отливов, энергию солнечную, биомассы и геотермальную), а также соответствующие показатели энергоэффективности устанавливают в комплексе стандартов (см. раздел 5 ГОСТ Р 51387).

5.8 К группам потребляющих комбинированные ТЭР при использовании по прямому функциональному назначению относят оборудование:

- для автомобильного, железнодорожного, авиационного, водного, морского и комбинированного транспорта;

- для выплавки черных и цветных металлов, сплавов;

- горнодобывающее и обогатительное;

- бытовое.

5.9 Идентификация и увязка соответствующих видов, типов и групп активно функционирующего оборудования с группами однородной продукции могут быть произведены с помощью «Перечня групп однородной продукции» [15], включая и возможность сопоставления применяемых групп с номером «Руководства по идентификации (описанию) группы однородной продукции в системе каталогизации США» [15]).

 

6. Показатели энергетической эффективности энергопотребляющих объектов различных видов, типов и групп

6.1 Энергосбережение как определенный вид целенаправленной деятельности характеризуется основными показателями энергетической эффективности, установленными в общем виде в ГОСТ Р 51541, а также рядом конкретных показателей, выражаемых через характеристики энергосодержания, энергосохранения, энергоемкости и экономичности энергопотребления, приведенных в соответствующих нормативных, методических, технологических и других документах (далее — документации) на основе [5—7] и стандартов, в том числе для:

- изделий бытового и коммунального назначения — в ГОСТ Р 51388;

- промышленных потребителей ТЭР — в ГОСТ Р 51379 и настоящем стандарте.

6.2 ПЭЭ относят к группе технического совершенства (уровня) продукции с учетом тенденции достижения экономически оправданной эффективности использования ТЭР на стадиях жизненного цикла: при добыче, переработке, транспортировании (передаче, распределении), преобразовании, хранении, использовании, утилизации — при существующем уровне развития науки и техники.

6.3 Нормируемые ПЭЭ в обеспечение энергосбережения разрабатывают на основе:

- гармонизации с признанными в Российской Федерации международными, региональными техническими регламентами и стандартами с обоснованием, при необходимости, их соответствующими расчетами, экспериментами, испытаниями, согласованиями;

- достижения экономически оправданной эффективности использования ТЭР на стандартизированном мировом уровне техники и технологии с учетом условий применения конкретного оборудования;

- соблюдения нормативных требований по охране окружающей среды;

- использования накопленного отечественного и межгосударственного опыта нормирования ПЭЭ при соблюдении требований безопасности энергопотребления для здоровья и жизни людей.

6.4 Общие положения по документированию ПЭЭ энергопотребляющей продукции установлены в ГОСТ Р 51541.

6.5 Общие требования к методам подтверждения соответствия нормативным значениям ПЭЭ и методические рекомендации по их определению установлены в ГОСТ Р 51379, ГОСТ Р 51380, ГОСТ Р 51388.

6.6 Отрасли, ведомства, организации, предприятия и фирмы — изготовители различных форм собственности могут вносить изменения в действующие стандарты и разрабатывать, при необходимости [9—11], соответствующие новые нормативно-методические документы для регламентирования ПЭЭ действующего и конструируемого энергопотребляющего оборудования на основе настоящего стандарта и других документов комплекса «Энергосбережение».

6.7 Идентификацию и выбор с целями установления в нормативно-методической и технологической документации тех или иных ПЭЭ в обеспечение энергосбережения для различных групп, типов и видов энергопотребляющего оборудования общепромышленного применения производят с учетом разделов 5 и 6 настоящего стандарта.

6.8 Основными группирующими ПЭЭ факторами в настоящем стандарте избраны типы энергопотребляющего оборудования общепромышленного применения.

6.8.1 ПЭЭ энергопотребляющих объектов различных типов, потребляющих ТЭР различных видов, представлены в таблице 6.1.

Кроме того, в этой же таблице приведены в обобщенном виде соответствующие экологические требования к энергопотребляющим объектам различных типов, учитывая, что энергосберегающее оборудование более экологично.

6.8.2 Показатель энергосодержания для разных типов оборудования в зависимости от вида потребляемых при эксплуатации ТЭР принимает различный вид, например емкость аккумулятора и др. (см. таблицу А.6.1).

 

Таблица 6.1

Вид потребляемых ТЭР

Тип энерго-потребляющих

Показатель энергоэффективности на стадиях жизненного цикла

Примечание

 

объектов (оборудование и сооружения)

при производстве оборудования

при эксплуатации

(для производства продукции, выполнения работ)

Экологические требования по защите окружающей среды (ОС)

Топливо (котельно-печное,

Активное

Энергоемкость

Энергоэкономичность Энергосодержание

Обязательное выполнение

моторное)

Пассивное

 

Потери

нормативов ПДС, ПДК

Электрическая энергия

Активное

Энергоемкость

Энергоэкономичность Энергосодержание

Снижение воздействия

 

Пассивное

 

Потери

электромагнитных полей

 

Сооружения

 

Электропроводность

на ОС

Тепловая энергия

Активное

Энергоемкость

Энергоэкономичность Энергосодержание

Обязательное выполнение

 

Пассивное

 

Потери

параметров

 

Сооружения

 

Теплопроводность

ПДС,ПДВ

Возобновляемые ТЭР

Активное

Энергоемкость

Энергоэкономичность Энергосодержание

Снижение зашумленности,

 

Пассивное

 

Потери

предотвращение

 

Сооружения

 

Электро- и теплопроводность

инфразвука и т.п.

Комбинированные ТЭР

Активное

Энергоемкость

Энергоэкономичность Энергосодержание

Требования устанавливают

 

Пассивное

 

Потери

конкретно по видам ТЭР и

 

Сооружения

 

Электро- и теплопроводность

типам оборудования

 

6.8.2 К обобщенным характеристикам ПЭЭ такого пассивного оборудования, как электрические сети, системы и электроприемники, относят качество электрической энергии и режимные параметры, качество и надежность энергоснабжения потребителей в целом.

6.8.3 К обобщенным характеристикам ПЭЭ такого пассивного оборудования, как тепловые сети и системы, относят качество тепловой энергии и режимные параметры.

6.8.4 ПЭЭ пассивного оборудования для передачи, транспортирования ТЭР характеризуют величинами снижения энергосодержания (тепловой и электрической энергии, топлива, энергоносителя), зависящими от степени теплоизоляции трубопроводов промышленного и коммунального назначения.

6.8.5 В качестве показателя эффективности передачи энергии для системы теплоснабжения используют (раздел 6 ГОСТ Р 51541) величину тепловых потерь (снижение теплосодержания рабочего тела) на заданную длину (100 м, 1 км) теплотрассы.

6.8.6 Для пассивного оборудования типа транспортных емкостей для ТЭР в качестве показателей энергоэкономичности используют отношение энергоемкости изготовления, например железнодорожной цистерны, к ее грузоподъемности (кВт×ч/т).

6.8.7 Для хранилищ ТЭР ПЭЭ является суммарное количество ТЭР, сохраняемое оборудованием в регламентированных условиях хранения за определенный период.

6.8.8 Показателем энергоэкономичности пассивного оборудования при использовании его для аккумулирования и последующей выдачи электрической энергии является показатель его энергосодержания, к которому относят энергетический эквивалент, выражаемый, например, количеством запасенной, выделяемой энергии на единицу массы, объема (МДж/кг, МДж/м3).

6.8.9 К показателям энергосодержания относят абсолютные значения выходного напряжения гальванического элемента (электрической батарейки) аккумулятора, электрохимического генератора (топливного элемента), магнитную проницаемость искусственных магнитов и т. п.

6.8.10 Сооружения, конструкции характеризуют показателями сбережения тепловой энергии: фактически для строительных, ограждающих материалов и конструкций определяют теплосопротивление на единицу площади и/или объема (МДж/м2; МДж/м3).

6.9 ПЭЭ оборудования, активно потребляющего ТЭР, устанавливают в соответствующей нормативно-методической документации с учетом действующих государственных стандартов (ГОСТ Р 51380, приложение В к Р 50-605-89-94 [6]) и методических документов (В.2 ГОСТ Р 51387).

6.10 В приложении А представлены рекомендации по установлению ПЭЭ для трех типов основных видов энергопотребляющего оборудования общепромышленного назначения.

6.10.1 ПЭЭ основного оборудования, активно потребляющего энергию традиционных источников, представлены в таблицах А.1.1—А.1.12.

6.10.2 ПЭЭ оборудования, активно использующего возобновляемые источники энергии, представлены в таблице А.2.1.

6.10.3 ПЭЭ электропроводящего (пассивного) оборудования представлены в таблицах А.3.1, А.3.2.

6.10.4 ПЭЭ энергопередающего (пассивного) оборудования представлены в таблицах А.4.1, А.4.2.

6.10.5 ПЭЭ транспортирующего ТЭР (пассивного) оборудования представлены в таблице А.5.1.

6.10.6 ПЭЭ энергорасходующего накопленный потенциал (пассивного) оборудования представлены в таблице А.6.1.

6.10.7 ПЭЭ теплосберегающих сооружений, включая материалы и конструкции, представлены в таблицах А.7.1, А.7.2.

 

7 Рекомендации по определению показателей энергетической эффективности энергопотребляющего оборудования

7.1 Определение и документирование состава ПЭЭ для конкретного оборудования основывается на выполнении разработчиком конкретного оборудования (документации) комплекса действий, требований, условий и критериев, необходимых для принятия обоснованного решения по обеспечению задач энергосбережения.

7.1.1 Для принятия обоснованных решений при определении состава ПЭЭ подвергают анализу широкий круг нормативных документов, содержащих информацию о разнородных показателях и характеристиках, описывающих различные аспекты их влияния на энергосбережение в целом, с целью получения объективной оценки ПЭЭ на длительную перспективу, а также для возможности проведения энергетических проверок как потребителей, так и производителей ТЭР.

7.1.2 В зависимости от различий рассматриваемых объектов, ПЭЭ должны описывать энергетические свойства изделий, ТП, зданий, сооружений, трубопроводов, электрических сетей и систем, нетрадиционных источников энергии, малой энергетики, специальные вопросы науки и техники, организации и управления, включая энергетическую составляющую на макроэкономическом уровне управления, планирования и статотчетности.

7.1.3 ПЭЭ, связанные с общеэнергетическими аспектами, должны характеризовать:

- свойства электромагнитной совместимости электрооборудования, приборов и электрических сетей;

- качество электрической энергии и режимные параметры электрических сетей, систем и электроприемников;

- качество тепловой энергии и режимные параметры тепловых сетей, систем и оборудования;

- качество и надежность энергоснабжения потребителей.

7.1.4 ПЭЭ, связанные с внешними ограничениями, должны обеспечивать:

- качество изготавливаемой продукции (выполняемых работ, процессов, услуг);

- охрану окружающей среды без ухудшения экологических характеристик производства;

- экономический рост (не препятствовать планам экономического развития, экономии ресурсов и расширенного воспроизводства);

- научно-технический прогресс (не препятствовать планам повышения качества продукции, обновления оборудования, внедрения новых ТП, автоматизации производства и повышению производительности труда);

- социальную стабилизацию без ухудшения условий труда, баланса рабочих мест и трудовых ресурсов в целом.

7.1.5 При оценке ПЭЭ необходимо проверять их на совместимость с конкретными производственными условиями для отдельного рабочего места, ТП, предприятия, региона в целом. При этом ПЭЭ, характеризующие разные направления совместимости, не должны выходить за их допустимые и предельные значения.

7.2 Требования экономного использования ТЭР выражаются определенными показателями и их значениями, устанавливаемыми согласно разделу 6 настоящего стандарта, при регламентированных режимах применения энергопотребляющего оборудования по его функциональному назначению.

7.3 В стандартах на конкретное оборудование, потребляющее ТЭР, устанавливают ПЭЭ и допустимые предельные значения, а также методы подтверждения этих значений.

7.4 Различные виды изделий и ТП, потребляющих ТЭР, характеризуются различными ПЭЭ вследствие физически различных способов и условий преобразования ТЭР, применяемых в конструкции конкретных изделий и при выполнении различных ТП, поэтому требования энергоэкономичности могут выражаться одним или несколькими ПЭЭ.

7.4.1 ПЭЭ, установленные на продукцию, потребляющую ТЭР при регламентированных условиях ее эксплуатации, являются техническими нормативами (5.7 ГОСТ Р 51541).

7.4.2 В документах, устанавливающих нормативы потребления ТЭР, должны быть оговорены необходимые условия и режимы работы, при которых они достигаются, а также регламентируются методы испытаний по определению значений каждого показателя с указанием, при наличии, ссылки на соответствующий документ.

 

Примечание — Информация, приведенная в документе, должна быть достаточной для воспроизведения эксперимента с целью проведения проверки и соблюдения установленных значений технических нормативов.

 

7.5 Определение ПЭЭ следует осуществлять, руководствуясь конкретными особенностями и свойствами данного объекта, потребностью формирования полного объема требований по экономному применению ТЭР, а также потребностью предоставления, при необходимости, полной информации об экономичности рассматриваемого объекта потребителю.

7.5.1 В качестве ПЭЭ предпочтительны удельные показатели (5.2 ГОСТ Р 51541).

7.5.2 Если совершаемая полезная работа не может быть подсчитана непосредственно в физических единицах, то в качестве показателя экономичности энергопотребления следует выбрать удельный показатель, например отношение расхода ТЭР к величине, характеризующей косвенно, но однозначно совершаемую работу.

7.5.3 Ряд объектов характеризуется количеством произведенной полезной работы (полезного эффекта). В этом случае следует предпочесть в качестве ПЭЭ абсолютные показатели (мощность: номинальную, фактическую, установленную, максимальную, общую, суммарную; потери: мощности, при коротком замыкании или холостого хода; тангенс угла потерь; потребляемый ток и др. (приложение В к [7]).

7.5.4 Если потребляемая объектом мощность и развиваемая им полезная мощность, для определенного режима работы, относительно неизменны во времени, то в качестве относительного показателя экономичности энергопотребления предпочтительно выбрать их отношение, т. е. КПД.

7.5.5 Для изделий, потребляющих одновременно различные виды ТЭР, ПЭЭ устанавливают с учетом 5.6 ГОСТ Р 51541.

7.5.6 Для ПЭЭ энергетического оборудования, оцениваемых в составе технологических процессов, показателями, выражающими требования энергетической эффективности расходования ТЭР, являются показатели энергоемкости производства единицы продукции, выполнения работ, оказания услуг.

 

Примечание — При расчете энергоемкости производства единицы продукции учитывают только ТП основного и вспомогательного производства, без учета потребления ТЭР на отопление, освещение и т. п., напрямую не связанные с изготовлением продукции.

 

7.5.7 Энергоемкость производства единицы продукции для каждого предприятия отличается в силу различных факторов, приведенных в 4.4, поэтому уровень энергоемкости даже аналогичных ТП с однотипным оборудованием может отличаться друг от друга, в связи с чем показатели энергоемкости устанавливают на уровне предприятий (7.4 ГОСТ Р 51541).

7.5.8 Показатели энергоемкости производства продукции могут быть представлены в виде абсолютных и удельных значений.

 

Примечания

1 Абсолютные значения ПЭЭ выражают в абсолютных значениях общего количества (объема, массы и т. п.) ТЭР, израсходованных на производство продукции.

2 Удельные значения ПЭЭ выражают отношением абсолютных значений энергоемкости производства всей продукции к ее общему количеству или отношением энергоемкости производства единицы продукции к одному из показателей, характеризующих основные ее свойства.

 

7.5.9 Установленные в документах значения ПЭЭ следует записывать с указанием допустимых пределов изменения величин по оговоренным критериям (7.8 ГОСТ Р 51541).

7.5.10 Значения показателей энергоемкости производства единицы продукции, выполнения работ и оказания услуг для предприятия в целом могут служить основой расчета плановой нормы для определения лимитов расхода ТЭР, расчета потребности в ТЭР на плановый период времени и в качестве базы для различных форм материального стимулирования предприятия вышестоящими органами управления и энергокомпанией, а также для стимулирования энергосбережения на всех уровнях управления и производства.

7.6 Показатели энергосбережения изделий, расходующих различные виды топлива, энергии, энергоносителей следует, как правило, определять (выбирать) и вносить в нормативно-методическую документацию с учетом особенностей каждого вида топлива, энергии, энергоносителей.

7.7 Для учета потребления ТЭР всех видов необходимо проводить перерасчет, ориентируясь на условное топливо.

7.7.1 Под условным топливом понимают топливо теплотой сгорания 29300 кДж/кг.

7.7.2 Перерасчет натурального топлива на условное проводят по формуле

,

где   количество условного топлива, кг;

 — количество натурального топлива, кг;

 — средняя теплота сгорания натурального топлива, кДж/кг.

7.7.3 Пересчет электрической, тепловой энергии и топлива на условное топливо должен производиться по их физическим (энергетическим) характеристикам на основании следующих соотношений [7, с. 63]:

1 кг у.т. = 29,30 МДж = 7000 ккал;

1 кВт×ч = 3,6 МДж = 0,12 кг у.т.;

1 кг дизельного топлива равен 1,45 кг у.т.;

1 кг автомобильного бензина равен 1,52 кг у.т.;

1 ккал = 427 кг×м = 4,19 кДж = 1,163 Вт×ч;

1 л.с×ч = 2,65 МДж; 1 МДж = 0,278 кВт×ч.

 

 

ПРИЛОЖЕНИЕ А

(рекомендуемое)

 

Основные показатели энергетической эффективности энергопотребляющего

(включая энергодобывающие, энергоиспользующие, электропроводящие,

энергопередающие, топливотранспортирующие и теплосберегающие виды)

оборудования общепромышленного применения

 

А.1 Показатели энергетической эффективности основного активно энергопотребляющего оборудования

 

Таблица А.1.1 — Горнодобывающее и горнообогатительное оборудование

 

Наименование оборудования

Показатель энергетической эффективности

Назначение

оборудования

Станок буровой скважинный

Удельный расход электроэнергии при бурении породы (кВт×ч/м3)

Выполнение работ

 

Примечание — Бурение скважин для взрывных работ

 

Комбайн врубовой

Удельный расход электроэнергии на 1 м3 вынутой породы (кВт×ч/м )

Выполнение работ

Машина забойная ударного действия для бурения скважин

КПД при номинальной нагрузке

Удельный расход рабочего агента [кВт×ч/(Вт×с), м3/(Вт×с)]

Выполнение работ

Дробилка (мельница) для измельчения горной породы или других объектов

Удельный расход электроэнергии на размельчение 1 т материала (кВт×ч/т)

Удельный расход электроэнергии (кВт×ч/м3)

Выполнение работ

Мельница трубная помольных агрегатов

Удельный расход электроэнергии (кВт×ч/т; МДж/т)

Выполнение работ

Дробилка конусная

Удельный расход электроэнергии на дробление 1 м3 породы (кВт×ч/м3)

Выполнение работ

Мельница

Удельный расход электроэнергии на размельчение 1 т материала (кВт×ч/т)

Выполнение работ

Барабан дробометный конвейерный

Удельный расход электроэнергии при регламентированных условиях (кВт×ч/т)

Выполнение работ

 

Таблица А.1.2 — Оборудование для выплавки черных и цветных металлов, печи различного общепромышленного применения

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Печь дуговая сталеплавильная

Удельный расход электроэнергии в период расплавления 1 т металлошихты в регламентированных условиях (кВт×ч/т)

Производство продукции; выполнение работ (нагрев)

Печь сопротивления для плавки алюминия и его сплавов

Удельный расход электроэнергии на расплавление и выдержку в горячем состоянии 1 т металла в регламентированных условиях (кВт×ч/т)

Выполнение работ и производство продукции

Печь полузакрытая и открытая

Удельный расход электроэнергии для производства карбида кальция из кокса и извести (кВт×ч/т)

Выполнение работ и производство продукции

Печь индукционная тигельная

Удельный расход электроэнергии для выплавки 1 т чугуна, алюминия (в зависимости от скорости плавки) (кВт×ч/т)

Выполнение работ и производство продукции

Печь полузакрытая и открытая

Удельный расход электроэнергии для производства карбида кальция из кокса и извести (кВт×ч/т)

Производство карбида кальция

Печь:

- индукционная вакуумная

Удельный расход электроэнергии на расплавление и перегрев в зависимости от емкости печи

Расплавление, выполнение работ и производство продукции

 

Удельный расход электроэнергии на расплавление и выдержку в горячем состоянии (кВт×ч/т)

 

- плавильная (открытая, полуоткрытая, индукционная)

Удельный расход электроэнергии на расплавление и выдержку в горячем состоянии 1 т металлошихты (кВт×ч/т)

 

- полузакрытая и открытая

Удельный расход электроэнергии для производства карбида кальция из кокса и извести (кВт×ч/т)

Производство карбида кальция

- плавильная, сушильная

Удельный расход кокса на выплавку 1 т серого чугуна (кг/т)

Выполнение работ и производство продукции

 

Удельный расход кокса на выплавку 1 т стали (кг/т)

путем сушки зерна, древесины, лакокрасочных

 

Удельный расход энергии (ГДж/т)

покрытий, кормов

 

Удельный расход электроэнергии на сушку:

 

 

1 кг зерна (кВт×ч/кг);

 

 

1 м3 древесины (кВт×ч/м3);

 

 

1 м2 лакокрасочных покрытий (кВт×ч/м2)

 

 

Удельный расход тепловой энергии на испарение единицы влаги (ГДж/кг)

 

 

Удельный расход условного топлива на испарение единицы влаги (г у.т./г)

 

 

Удельный расход электроэнергии, на потери тепла внешней поверхности печи при холостом ходе [кВт×ч/м2×ч)]

 

 

Удельный расход электроэнергии на сушку 1 м лакокрасочных покрытий (кВт×ч/м2)

 

 

Удельный расход электроэнергии для технологической тепловой обработки 1 т стеклотары (кВт×ч/т)

 

 

Удельный расход электроэнергии на расплавление и выдержку в горячем состоянии (кВт×ч/т)

 

 

Допустимый расход электроэнергии в регламентированных условиях (кВт×ч/т)

 

 

Удельный расход энергии на расплавление и выдержку в горячем состоянии (ГДж/т)

 

- плавильная, сушильная

Удельный расход электроэнергии по переменному (постоянному) току выпрямителя (МДж/т)

 

 

Удельный расход энергии пара для подогрева электролита (МДж/т; кВт×ч/т)

 

 

Удельный расход электроэнергии для тепловой обработки стеклотары (кВт×ч/т)

 

 

Расход условного топлива или тепловой энергии на обжиг 1000 шт. кирпичей (кг у.т./1000 шт.)

 

 

Удельный расход тепловой энергии топлива для регламентированных условий (МДж/кг; ГДж/1000 шт.)

 

Агрегат печной обжига цементного клинкера

Удельный расход тепловой или электроэнергии на получение 1 т портландцемента (МДж/т; кВт×ч/т)

Выполнение работ и производство продукции

 

Таблица А.1.3 — Турбинное оборудование

 

Наименование оборудования

Показатель энергетической эффективности

Назначение

оборудования

Турбина:

- паровая

- газовая

Удельный расход тепла [кДж/(кВт×ч)] КПД при номинальной нагрузке (%)

Преобразование энергии

 

Примечание — Устанавливают также возможное снижение КПД газовой турбины в процессе нормальной эксплуатации, в течение межремонтного периода, относительно первоначального значения, например не более 3 %

 

Установка:

Удельный расход теплоты (пара)

Преобразование энергии

- паротурбинная стационарная

[кДж/(кВт×ч); кг/(кВт×ч)]

КПД при номинальной нагрузке (%)

 

- газотурбинная

Удельный расход тепла (кДж/кг)

 

- маслонапорная для гидравлических турбин

Общая потребляемая мощность (кВт)

 

 

Таблица А.1.4 — Котлы, теплообменники, горелки, испарители, компрессоры, насосы и другое оборудование различного общепромышленного применения

 

Наименование оборудования

Показатель энергетической эффективности

Назначение

оборудования

Котел паровой:

- отопительный

КПД для разовых режимов работы котла (%)

Теплопроизводительность (кВт)

Преобразование энергии

 

Расход топлива при номинальной производительности котла

 

 

Расход условного топлива при номинальной производительности котла [кг у.т./(кг×ч)]

 

 

Удельный расход топлива на единицу вырабатываемой энергии

 

 

Удельный расход топлива на испарение единицы влаги

Преобразование энергии

 

Производительность пара (т/ч)

 

- отопительный промышленный или бытовой водогрейный

Расход условного топлива при номинальной производительности котла пара [кг у.т./(кг×ч)]

 

 

Удельный расход топлива на единицу вырабатываемой энергии [г/(кВт×ч)]

 

 

Удельный расход условного топлива на выработку 1 Гкал тепла (кг у.т./Гкал)

 

 

Удельный расход тепловой энергии на единицу продукции (Гкал/. . .)

 

 

КПД брутто (%)

 

Котел газовый:

КПД лучистый (%)

Преобразование энергии

- промышленный;

 

 

- бытовой

 

 

Теплообменник

Удельная эффективность теплообмена (отношение величины подъема температуры более холодного потока к разности температур, с которыми два потока входят в теплообменник)

Передача, распределение электроэнергии и преобразование ее параметров

 

Примечание — Отношение величин температур потоков рабочих тел, участвующих в теплообмене

 

Горелка газовая:

КПД лучистый (%)

Преобразование энергии

- промышленная

Коэффициент избытка воздуха

 

 

Потери полного напора воздуха при номинальной тепловой мощности

 

 

Коэффициент избытка воздуха (в долях)

 

 

Потери тепла от химической неполноты сгорания (%)

 

- бытовая

КПД лучистый (%)

 

- инфракрасного излучения

Коэффициент избытка воздуха в газовоздушной смеси (в долях)

 

Горелки

Коэффициент избытка воздуха (в долях)

Преобразование энергии

промышленные на жидком топливе

Потери тепла от механической неполноты сгорания (%)

 

 

Потери тепла от химической неполноты сгорания на выходе из камеры горения (%)

 

Испаритель поверхностного типа

Удельные потери тепла с продувкой (МДж/т)

Компрессор

КПД при номинальной нагрузке (%)

Преобразование энергии

Компрессор воздушный

КПД политропный (в долях)

Преобразование энергии

для доменных печей

КПД изотермический (в долях)

 

 

Удельный расход электроэнергии на производительность (кВт×ч/1000 м3)

 

Насос (в т. ч. центробежный)

КПД при номинальной нагрузке, т.е. отношение мощности насоса к мощности на приводном валу (%)

Достижение полезного эффекта

Вентилятор центробежный дутьевой котельный

КПД максимальный (%), средневзвешенный (%)

Выполнение работ

Конвейер

Расход электроэнергии на перемещение 1 т груза на 1 м (кВт×ч×т—1×м—1)

Выполнение работ

 

Таблица А.1.5 — Энергопотребляющее оборудование для производства продукции

 

Наименование оборудования

Показатель энергетической эффективности

Назначение

оборудования

Пресс:

Удельный расход электроэнергии

Производство

- шнековый горизонтальный

(кВт×ч/1000 шт.)

продукции

- гидравлический для пластмасс

Удельный расход электроэнергии

 

- кривошипный

(кВт×ч/цикл)

 

горячештамповочный

Удельный расход электроэнергии

 

- элекгрогидравлический

[Вт×мин/(кН×м)]

 

вырубной

Удельное потребление электроэнергии

 

 

(кВт×ч/кН)

 

Станок:

Расход энергии на выполнение

Производство

- токарный

регламентированных работ (кВт×ч/кг)

продукции

- ткацкий

Удельный расход электроэнергии на изготовление 1 м2 ткани (определенного вида) (кВт×ч/м2)

 

 

Технологическое потребление электроэнергии (кВт×ч)

 

Аппарат для очистки молока

Удельное потребление электроэнергии (кВт×ч/дм3)

Производство продукции

Автомат дозировочно-наполнительный (при консервировании)

Удельное потребление электроэнергии (кДж/банка; кВт×ч/банка)

Производство продукции

Установка для получения:

Максимально допустимый удельный

Производство

- газообразного хлора;

расход электроэнергии (МДж/т)

продукции

- электрической меди

Удельный расход тепловой энергии (МДж/кг)

 

Машина ленточная для хлопка и химических волокон

Удельное потребление электроэнергии (кВт×ч×м-1×с-1)

Производство продукции

Машина текстильная сушильно-ширильная

Удельное потребление электроэнергии (тепла) (кДж/кг)

Полное удельное потребление энергии (кДж/кг)

Производство продукции

Машина для литья под давлением

Удельный расход электроэнергии (кВт×ч/кг)

Производство продукции

Резиносмеситель периодического действия

Удельный расход электроэнергии (кВт×ч/кг)

Выполнение работ

Вращатель сварочный

Удельная потребляемая мощность [(Вт/(Н×м×с-1)]

Выполнение работ

Форматор-вулканизатор покрышек

Удельный расход электроэнергии (кВт×ч/шт.)

Выполнение работ

Холодильник (морозильник) промышленный

Удельный расход электроэнергии за сутки (при регламентированных условиях) (кВт×ч/сут)

Преобразование энергии

 

Удельный расход электроэнергии на производство холода (кВт×ч/Гкал)

 

 

Таблица А. 1.6— Транспорт автомобильный

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Автомобиль:

- грузовой

Удельный расход топлива при скорости 60 км/ч на 100 км, не более (... л/100 км)

Выполнение работ

 

Удельный расход топлива на 100 км (л/100 км)

 

 

Удельный расход топлива на перевозку 1 т груза на 100 км пути (по регламентируемой трассе)

×т-1×100км-1)

 

- легковой

Удельный расход топлива на 100 км (л/100 км)

 

 

Расход топлива на единицу работы

 

 

Примечание — Может быть произведен расчет на 1 км пути

 

 

Таблица А. 1.7— Тракторы (сельскохозяйственные машины)

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Трактор

Расход топлива при наибольшей тяговой

Выполнение работ

Сельскохозяйственная

мощности (л/кВт)

 

машина

Удельный расход топлива на 100 км (л/100 км)

 

 

Удельный расход топлива на холостом ходу (л/ч)

 

 

Таблица А. 1.8— Продукция строительного, дорожного и коммунального машиностроения

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Экскаватор:

Расход топлива на 1 м извлеченной породы (кг/м3;

Выполнение работ

- ковшовый

л/м3)

 

- роторный

Расход топлива на один рабочий цикл (по каждому виду работ) (кг/цикл, л/цикл)

 

Экскаватор универсальный канатный

Удельный расход топлива [г/(кВт×ч)]

Выполнение работ

Кран:

Удельный расход электроэнергии [Вт×ч/(т×цикл)]

Выполнение работ

- мостовой однобалочный

Контрольный расход топлива в транспортном режиме (л/100 км)

 

- стреловой самоходный

Контрольный расход топлива в крановом режиме (л/ч)

 

Кран мостовой электрический

Удельная потребляемая мощность, определяемая отношением максимально потребляемой мощности к грузоподъемности крана (кВт×ч/т)

Выполнение работ

 

Таблица А.1.9 — Двигатели, генераторы

 

Наименование оборудования

Показатель энергетической эффективности

Назначение

оборудования

Двигатель:

КПД(%)

Бензиновые, дизельные,

- внутреннего сгорания

КПД при номинальной нагрузке (%)

газовые, электрические и

- газотурбинный

 

комбинированные способы

- электрический

Отношение энергоемкости изготовления к номинальной мощности (кВт×ч/кВт)

преобразования энергии

 

Примечание — Данный показатель дает представление, во что обходится в энергетическом смысле производство 1 кВт

 

- реактивный

Количество топлива (расход) на

 

- турбовинтовой

транспортирование 1 кг полезной нагрузки

 

- винтовой

 

 

Генератор:

КПД (%)

Преобразование энергии

- дизельный

Удельный расход условного топлива на

 

- электрический

единицу выработанной энергии [г/(кВт×ч)]

 

 

КПД при номинальной нагрузке (%)

 

Оборудование медицинское

Расход электроэнергии на регламентированный набор процедур на одного пациента

Измерения

Машина для уборки улиц

Удельный расход топлива [г/(м2×ч)]

Выполнение работ

Холодильник промышленный

Удельный расход электроэнергии за сутки при регламентированных условиях (кВт×ч/сут)

Преобразование энергии

 

Примечание — Для заданных значений температур холодильных камер

 

 

Таблица А.1.10 — Оборудование торговое, медицинское, коммунальное

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Касса-автомат

Максимальная потребляемая мощность при номинальном режиме работы (Вт)

Выполнение работ

Электрокардиограф

Потребляемая мощность при номинальном режиме работы (Вт)

Измерения

Рентгеновская установка

Расход электроэнергии на обслуживание одного пациента (кВт)

Измерения

 

Таблица А.1.11 — Измерительные приборы

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Средства измерений с активно-реактивным входом

Потребляемая мощность при номинальном режиме работы (Вт)

Выполнение работ (измерения)

Прибор электроизмерительный

Потребляемая мощность при номинальном режиме работы (Вт)

Измерения

Измерительный трансформатор, шунты

Внутреннее сопротивление для электроизмерительных приборов

 

 

Внутреннее сопротивление для каждого предела измерений (Ом, кОм, МОм)

 

Прибор:

Потребляемая мощность при номинальном

Измерения

- электрический

режиме работы (Вт×ч; кВт×ч)

 

- электронный

Внутреннее сопротивление для каждого

 

- радиотехнический

предела измерений (Ом, кОм, МОм)

 

Счетчик газа и жидкости

Потери давления на счетчике при номинальном расходе (Па)

Измерения

 

Таблица А.1.12— Бытовое оборудование

 

Наименование оборудования

Показатель энергетической эффективности

Назначение

оборудования

Радиоаппаратура бытовая

Потребляемая мощность при номинальном параметре и качестве приема (Вт)

Выполнение работы для удовлетворения потребностей

Электрокофемолка

Потребляемая мощность при номинальном режиме работы (Вт)

Преобразование энергии

Машина стиральная бытовая

Удельный расход электроэнергии (кВт×ч/кг)

Потребляемая мощность (Вт)

Преобразование энергии

Вентилятор общего

КПД максимальный полный (в долях)

Преобразование энергии

назначения:

КПД максимальный статистический (в долях)

 

- осевой

 

 

- радиальный

 

 

Пылесос электрический бытовой

Удельная потребляемая мощность (Вт×с/м3)

Расход электроэнергии на достижение регламентированного полезного эффекта

Преобразование энергии

Холодильник бытовой

Удельный расход электроэнергии за сутки, на единицу объема холодильной камеры (кВт×ч/сут; кВт×ч/л)

Отношение энергоемкости изготовления холодильника к емкости его холодильной камеры (кВт×ч/м3)

Преобразование энергии

 

Примечание — Показатель дает представление о прогрессивности конструкции и технологии в сравнении с аналогичными изделиями с точки зрения энергозатрат при изготовлении 1 дм3 холодильного объема

 

Холодильник (морозильник):

Удельный расход электроэнергии за сутки при регламентированных условиях (кВт×ч/дм3)

Преобразование энергии

- бытовой компрессионный

 

 

Чайник (самовар) электрический бытовой

Удельный расход электроэнергии (кВт×ч/л)

Преобразование энергии

Газовая горелка

КПД термический для номинального режима работы (%)

Преобразование энергии

Ручная сверлильная электрическая машина

Удельный расход электроэнергии на проходку 1 мм (Вт×с/мм)

Потребляемая мощность при номинальном режиме работы (Вт)

Преобразование энергии

Утюг электрический бытовой

Удельный расход электроэнергии (кВт×ч/°С)

Время разогрева подошвы (мин)

Преобразование энергии

 

А.2 Показатели энергетической эффективности оборудования,

активно использующего возобновляемые ТЭР

 

Таблица А.2.1 — Оборудование, использующее возобновляемые ТЭР

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Энергетическая установка

Количество энергии (электрической, тепловой), получаемое единицей массы, площади, объема энергетической установки за установленный период времени (в регламентированных условиях, в т. ч. с учетом региона, района функционирования)

Получение, передача, распределение энергии ветра, солнца и других возобновляемых ТЭР

 

Примечание — ПЭЭ устанавливают в документах на соответствующие энергетические установки

 

 

 

 

А.3 Показатели энергетической эффективности электропроводящего

(пассивного) оборудования

 

Таблица А.3.1 — ЛЭП, электрические сети промышленного и коммунального назначения

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

ЛЭП:

Потеря напряжения на единицу длины (В/м)

Передача, распределение

- высокого напряжения

 

электроэнергии, преобразование ее параметров

- низкого напряжения (токопроводы)

Электрическое сопротивление постоянному току участка проводника (заданной длины при регламентированных условиях)

Величина потерь электроэнергии по пути от производителя к потребителю в регламентированных условиях

Допустимые потери энергии в сети (%)

Активное сопротивление 1 м токопровода (Ом)

 

Блоки энергетические ТЭС

Удельный расход условного топлива на полезный отпуск электроэнергии [г/(кВт×ч)]

Преобразование энергии

 

Таблица А.3.2 - Оборудование для передачи и распределения электрической энергии

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Трансформатор

Потери холостого хода и короткого замыкания (кВт)

Передача, распределение электроэнергии, преобразование ее параметров

Выпрямитель

Потеря мощности (кВт)

Преобразование энергии

Трансформатор силовой масляный общего назначения

Потери холостого хода (кВт)

Ток холостого хода (%)

Напряжение короткого замыкания (кВт)

Передача, распределение электроэнергии, преобразование ее параметров

Системы электроснабжения самолетов и вертолетов

Напряжение, частота, мощность (В, Гц, кВт)

Передача, распределение электроэнергии, преобразование ее параметров

Токопровод ЛЭП

Активное сопротивление 1 м токопровода (Ом)

Передача электроэнергии

 

А.4 Показатели энергетической эффективности энергопередающего тепло,

топливо (пассивного) оборудования

 

Таблица А.4.1 — Трубопроводы (газопроводы, нефтепроводы), агрегаты

газоперекачивающие

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Трубопровод:

Предельная температура на поверхности

Передача, распределение,

- теплотрасса

изоляции трубопровода (°С)

транспортирование и

- водопровод

Величина потерь энергоресурсов по пути

преобразование тепловой

- нефтепровод

от производителя к потребителю

энергии, энергоносителей

- газопровод

 

 

- пневмопровод

 

 

- воздухопровод (горячий воздух)

 

 

Агрегат газоперекачивающий с газотурбинным приводом

КПД(%)

Потери масла (кг/ч)

Передача, распределение, транспортирование энергоносителей

 

Таблица А.4.2 — Трубопроводы коммунального назначения

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Трубопровод:

Предельная температура на поверхности

Передача, распределение,

- водопровод

изоляции трубопровода (°С)

транспортирование и

- газопровод

Величина тепловых потерь (потерь давления)

преобразование энергии

- воздухопровод (горячий воздух)

на единицу длины теплотрассы (трубопровода сжатого воздуха).

 

 

 

Примечание — Снижение теплосодержания рабочего тела

 

 

 

Величина потерь энергоресурсов по пути от производителя к потребителю (или на длине 1 км трассы)

 

 

А. 5 Показатели энергетической эффективности транспортирующего топливо (пассивного) оборудования и емкостей для хранения топлива

 

Таблица А.5.1— Емкости для транспортирования и хранения топлива

 

Наименование оборудования

Показатель энергетической эффективности

Назначение оборудования

Железнодорожная цистерна, бензовоз и

Отношение энергоемкости изготовления цистерны для топлива к ее грузоподъемности (кВт×ч/т).

Доставка топлива

т. п.

 

Примечание — Показатель дает представление о прогрессивности конструкции и технологии в сравнении с аналогичными с точки зрения энергозатрат при перевозке 1 т

 

 

 

Потери топлива при загрузке, транспортировании и выгрузке из цистерны и бензовоза (кг/т).

 

 

 

Примечание — В знаменателе относительного показателя указана первоначальная масса заливки цистерны

 

 

Емкость для хранения ТЭР

Отношение энергоемкости изготовления емкости для топлива к ее вместимости (кВт×ч/т)

Потери топлива при хранении в регламентированных условиях за месяц (в любой другой заданный период времени) [кг/т]

 

 

А.6 Показатели энергетической эффективности энергорасходующего накопленный потенциал (пассивного) оборудования

 

Таблица А.6.1 — Оборудование, расходующее свой энергопотенциал, наведенный

техногенным способом

 

Наименование оборудования (устройства)

Показатель энергетической эффективности

Назначение оборудования

Аккумулятор, элемент

Емкость (А×ч)

Сохранение электрического

гальванический

Мощность (Вт)

потенциала, накопленного

 

Количество энергии (Вт×ч)

при зарядке

 

 

Примечание — Абсолютные ПЭЭ

 

 

 

Удельная энергоемкость при эксплуатации:

 

 

- массовая (Вт×ч/кг);

 

 

- объемная (Вт×ч/л)

 

Генератор

Удельное энергосодержание:

Поддержание электрического

электрохимический

- массовое (Вт×ч/кг);

потенциала в

 

- объемное при стандартизованных режимах разряда (Вт×ч/л)

регламентированных условиях эксплуатации

Примечания

1 Для электрохимического генератора энергоемкость (при эксплуатации) рассчитывают с учетом массовых и объемных характеристик самого элемента без конструктивных элементов, содержащих реагенты (водород и кислород).

2 К этой же группе, если определять ПЭЭ разрабатываемых залежей, газовой или нефтяной скважины, могут быть отнесены ТЭР, расходующие свой накопленный (аккумулированный природный) энергопотенциал

 

А.7 Показатели энергетической эффективности теплосберегающих сооружений, включая материалы и конструкции

 

Таблица А.7.1 — Строительные материалы, элементы строительных (ограждающих) конструкций и сооружений

 

Наименование оборудования (сооружений, конструкций)

Показатель энергетической эффективности

Назначение оборудования

Стеновые поверхности:

Величина теплоизлучения (теплосопро-

Сбережение тепла внутри

- кирпичные

тивления) на 1 м2 площади (ккал/м2)

жилых и иных помещений

- бетонные

Величина теплопотерь на 1 м2 площади

 

- оконный проем

за сутки [ккал/(м2×сут)]

 

 

Примечание — С учетом двойного, тройного стеклопакета (в деревянной, пластмассовой рамах)

 

Ограждающие конструкции

Приведенный трансмиссионный коэффициент теплопередачи здания [(Вт/(м2×°С)]

Удельный расход тепловой энергии на отопление здания за отопительный период [кВт×ч/(м2×°С×сут); кВт×ч/(м3×°С×сут)]

 

 

Таблица А.7.2 — Теплоизоляционные и диэлектрические материалы (ПЭЭ продукции,

сокращающей потери ТЭР)

 

Наименование материала

Показатель энергетической эффективности

Назначение оборудования

Шлаковата

Разность температур внутри теплоизолятора и снаружи трубы (°С, не более. . .)

Сбережение тепла (уходящего через крыши, стены, трубопроводы)

 

 

ПРИЛОЖЕНИЕ Б

(справочное)

 

Библиография

[1] Федеральная целевая программа «Энергосбережение России» (1995—2000 гг.). Утверждена Постановлением Правительства РФ от 24 января 1998 г. № 80. — М.: Минтопэнерго РФ, 1998

[2] Безруких П.П., Пашков Е.В., Церерин Ю.А., Плущевский М.Б. Стандартизация энергопотребления — основа энергосбережения. — Стандарты и качество, 1993, № 11

[3] Термины и определения в нормативных правовых актах Российской Федерации: Справочник /Сост. Плотников А.В., Пискова Г.К. М.: Информпечать, 1998

[4] Захаров Б.В., Киреев B.C., Юдин Д.Л. Толковый словарь по машиностроению. Основные термины /Под ред. А.М. Вольского. М.: Рус. яз., 1987, с. 143.

[5] РД 50-374—82. Методические указания по составу и содержанию вносимых в стандарты и технические условия нормативов расхода топлива и энергии на единицу продукции (работы)

[6] Р 50-605-89—94. Рекомендации по стандартизации. Энергосбережение. Порядок установления показателей энергопотребления и энергосбережения в документации на продукцию и процессы. М.: ИПК Изд-во стандартов, 1996

[7] Методика энергетического анализа технологических процессов в сельскохозяйственном производстве /Разработчики: Никифоров А.Н., Токарев В.А., Борзенков В.А. (ВИМ); Севернев М.М., Колос В.А. (ЦНИИМЭСХ); Тихомиров А.В., Мурадов В.П., Маркелова Е.К. (ВИЭСХ). М.: ВИМ, 1995

[8] Агеносов А.М. Стандартизация, сертификация и аудит в области энергосбережения. Пути решения задач на региональном уровне.— Стандарты и качество, 1999., № 9, с. 25

[9] Совместное решение Минэкономики России и Минтопэнерго России от 6 октября 1999 г. «Перечень нормативных, правовых и методических документов по энергоресурсосбережению, подлежащих переработке и разработке в 1999—2001 гг.»

[10] Совместное решение Минтопэнерго России и Госстандарта России от 27 января 1997 г. «О принципах реализации положений Федерального закона «Об энергосбережении» в части стандартизации, сертификации и метрологии»

[11] Постановление Правительства Российской Федерации от 12 августа 1998 г. № 938 «О государственном энергетическом надзоре»

[12] Автоматизированная система анализа рационального использования тепла и электроэнергии предприятиями и организациями (АС АПРИТЭ): Инструкция по подготовке и передаче информации об использовании энергии на предприятиях по формам 10111-СН (электро) и 10111-СН (тепло) для территориальных управлений Госэнергонадзора. М.: Главгосэнергонадзор Минтопэнерго России, 1998. С. 12

[13] Общероссийский классификатор продукции ОК 005—93. М.: ИПК Изд-во стандартов, 1995

[14] Общероссийский классификатор видов экономической деятельности, продукции и услуг ОК 004—93. М.: ИПК Изд-во стандартов, 1996

[15] Перечень групп однородной продукции. М.: Изд-во стандартов, 1984

 

 

Ключевые слова: оборудование, энергопотребление, энергосбережение, показатели, энергетическая эффективность, энергетические установки, тепловая энергия, электроэнергия, теплоснабжение, виды, типы, группы, номенклатура

 

 

Содержание

 

1 Область применения

2 Нормативные ссылки

3 Определения и сокращения

4 Общие положения

5 Идентификация видов и подвидов, типов, групп и подгрупп энергопотребляющих объектов (оборудования, сооружений) общепромышленного применения

6 Показатели энергетической эффективности энергопотребляющих объектов различных видов, типов и групп

7 Рекомендации по определению показателей энергетической эффективности энергопотребляющего оборудования

Приложение А Основные показатели энергетической эффективности энергопотребляющего (включая энергодобывающие, энергоиспользующие, электропроводящие, энергопередающие, топливотранспортирующие и теплосберегающие виды) оборудования общепромышленного применения

А.1 Показатели энергетической эффективности основного активно энергопотребляющего оборудования

А.2 Показатели энергетической эффективности оборудования, активно использующего возобновляемые ТЭР

А.3 Показатели энергетической эффективности электропроводящего (пассивного) оборудования

А.4 Показатели энергетической эффективности энергопередающего тепло, топливо (пассивного) оборудования

А. 5 Показатели энергетической эффективности транспортирующего топливо (пассивного) оборудования и емкостей для хранения топлива

А.6 Показатели энергетической эффективности энергорасходующего накопленный потенциал (пассивного) оборудования

А.7 Показатели энергетической эффективности энергосберегающих сооружений, включая материалы и конструкции

Приложение Б Библиография

ВложениеРазмер
Р 51749-2001-Энергопотребляющее оборудование.doc233 КБ

ГОСТ Р 51750-2001. Энергосбережение. Методика определения энергоемкости при производстве продукции и оказании услуг в технологических энергетических системах

ГОСТ Р 51750-2001

 

УДК 339.4.004.018:006.354                                                                                  Группа Е01

 

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

 

 

Энергосбережение

МЕТОДИКА ОПРЕДЕЛЕНИЯ ЭНЕРГОЕМКОСТИ

ПРИ ПРОИЗВОДСТВЕ ПРОДУКЦИИ И ОКАЗАНИИ УСЛУГ

В ТЕХНОЛОГИЧЕСКИХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМАХ

Общие положения

 

Energy conservation.

Methods for determination of energy capacity on production

of output and rendering of services in technological energy systems.

General principles

 

ОКС 27.010

ОКСТУ 3103

3104

3403

3404

Дата введения 2002—01—01

 

Предисловие

1 РАЗРАБОТАН ФГУ «Российское агентство энергоэффективности» Минэнерго России

ВНЕСЕН ФГУ «Российское агентство энергоэффективности» Минэнерго России

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 21 мая 2001 г. № 211-ст

3 В настоящем стандарте реализованы нормы и требования:

Закон РФ «Об энергосбережении»,

Закон РФ «О сертификации продукции и услуг»,

Закон РФ «О связи»,

Закон РФ «О почтовой связи»,

Закон РФ «О государственном регулировании внешнеторговой деятельности»,

Закон РФ «Об основах туристской деятельности в Российской Федерации»,

Закон РФ «Об отходах производства и потребления»,

Закон РФ «Об охране атмосферного воздуха»,

а также положения ИСО 13600: 1997 «Энергосистемы технические. Основные понятия»

4 ВВЕДЕН ВПЕРВЫЕ

 

 

Введение

Энергосбережение является одним из ключевых направлений энергетической политики России в процессе реализации ФЦП «Энергосбережение» [1], разработанной на основе Закона Российской Федерации «Об энергосбережении» [2].

В свою очередь, выполнение задания ФЦП «Энергосбережение» в 2001 г. и в последующие годы также должно базироваться на развитой нормативно-методической основе [2, 3], т. е. на межгосударственных и российских стандартах, устанавливающих в т. ч. номенклатуру показателей энергетической эффективности технологических энергетических систем (далее — ТЭС) при производстве продукции и оказании услуг.

Целью настоящего стандарта является установление методологии комплексного определения энергоемкости ТЭС различного назначения при производстве продукции и оказании услуг. В большой мере учтены современные системные тенденции энергосбережения, которые «начинаются с учета энергоресурсов и заканчиваются рациональным управлением их расхода» [4].

Характерны тенденции одновременного рассмотрения проблем: «В настоящее время стоимостные оценки не могут служить единственной мерой эффективности объектов энергетики как в России в силу быстрых переходных процессов в народном хозяйстве, так и в промышленно развитых странах. Поэтому все большее внимание обращается на анализ материальных потоков в производственной сфере и окружающей среде в их взаимосвязи.

В топливно-энергетическом комплексе (далее — ТЭК) естественными натуральными измерителями его продукции служат энергетические величины и соответствующие им единицы. Продукцией ТЭК является свободная энергия — та часть общей энергии, заключенной в энергоресурсе, которая может быть направлена на совершение полезной работы или превращена в другие формы энергии» [5].

Примечательно также, что на международном уровне в 1997 г. был принят стандарт ИСО 13600 [7], в котором энергоресурс прямо назван товаром, потребляемым в техносфере, связанной с другими сферами жизни. Международный стандарт ИСО 13600 был подготовлен Техническим комитетом ИСО/ТК 203 «Технические энергетические системы». Знаменательно, что в отечественных документах энергию, топливо также называют продукцией, а в статье [4] электроэнергия прямо названа «товаром номер один». «Энерготовар» [5], «энергоресурс» — таковы современные ключевые понятия.

Следует, однако, отметить, что в отечественных нормативных правовых актах пока отсутствуют термины «техносфера», «биосфера» [6], хотя они уже установлены в ИСО 13600 применительно к функционированию технических энергетических систем [7]. В многочисленных отечественных статьях 90-х годов проблемы энергосбережения рассматриваются также совместно с проблемами охраны окружающей среды. Наиболее четко это направление развития структурировано в докладе [8]: «Эффективным инструментом разработки энергосберегающих систем является функционально-экологическое проектирование (далее — ФЭП), синтезирующее принципы функциональности и экологичности (для природы и человека) систем.

При проведении ФЭП основным критерием адекватности затрат на осуществление требуемых функций является экологичность системы и ее элементов, характеризующихся рядом показателей.»

Кроме того, традиционно при установлении требований к уровню экономичности продукции [9] стремятся обеспечить минимум расходования всех видов материальных, трудовых и финансовых ресурсов, т. е. наряду с собственно техническими (технологическими) и экологическими проблемами в комплексе рассматривают также социальные вопросы затрат труда и ресурсные вопросы затрат материалов, топлива и энергии.

Учитывая важные современные тенденции развития хозяйства и стандартизации в обеспечение ресурсосбережения, решено установить в настоящем стандарте ряд основополагающих терминов, определений и понятий, а также представить соответствующие концептуальные положения, чтобы гармонизировать отечественные и международные представления, а также деятельность в обеспечение энергосбережения при энергопотреблении.

Наряду с этим, в настоящем стандарте частично использованы методические положения документа [10], хотя он перегружен общими макроэкономическими показателями, не содержит терминологического аппарата и нормативных ссылок.

Объектом стандартизации в настоящем документе является технологическая энергоемкость. «Одним из критериев, позволяющих достоверно определить затраты сельскохозяйственного производства, не исключая стоимостных показателей, является энергоемкость. Этот показатель наиболее объективен, не зависит от конъюнктуры рынка и характеризует собой технический уровень развития технологий» [11].

Терминологическое наполнение, концептуальная и библиографическая [1—43] основа, методические положения настоящего стандарта позволят целенаправленно и обоснованно на современном уровне требований определять показатели энергоемкости производства продукции и оказания материальных услуг в ТЭС с учетом обязательных «рамочных» стратегических ограничений устойчивого развития:

- технологических аспектов энергопотребления при производстве продукции и оказании услуг (в товаросфере);

- экологических аспектов воздействия технологических энергетических систем на окружающую среду (в частности, в атмосфере [39]);

- социальных аспектов, в частности трудоемкости производства продукции и оказания услуг с заданными энергоемкостями (в социосфере);

- ресурсных аспектов, включая как традиционные источники топливно-энергетических ресурсов (далее — ТЭР), так и энергию из отходов, сбросов и выбросов (в гео- и гидросферах, а также в атмосфере био- и ресурсосферы).

С учетом названных обязательных «рамочных» стратегических ограничений развития хозяйства основным предметом установления в настоящем стандарте является идентификация технологической энергоемкости производства продукции и оказания услуг, т. е. товарно-финансовая сфера регулирования потребления ТЭР как полноценного энерготовара на рынках сбыта.

При этом предполагается, что традиционные энергоресурсы получают из недр, от водных потоков и др., а охрана окружающей среды включает как мониторинг выбросов в атмосферу, так и процессы ликвидации твердых отходов и жидких сбросов. Кроме того, на структуру и содержание настоящего стандарта оказал влияние тот факт, что в сфере экологического управления во взаимосвязи с энергосбережением активно разрабатывают документы на международном уровне [40].

Настоящий стандарт предназначен для использования различными специалистами, участвующими в разработке нормативной и технологической документации, связанной с добычей, производством, хранением, транспортированием, использованием первичных и вторичных энергетических ресурсов, при разработке, эксплуатации, ремонте, списании и ликвидации (как последней стадии жизненного цикла продукции — с утилизацией техногенных и удалением опасных составляющих) энергопотребляющего оборудования, а также специалистами — разработчиками нормативных документов, оборудования, технологий, методов контроля, испытаний, сертификации, лицензирования, страхования в обеспечение энергосбережения и экобезопасности.

Настоящий стандарт является одним из комплекса нормативных документов России профиля «Энергосбережение», призванных в развитие ГОСТ Р 51387 создать нормативную базу для проведения работ по энергосбережению на предприятиях различных отраслей народного хозяйства с учетом социальных [26] и экологических факторов [40, 43].

 

 

1 Область применения

Настоящий стандарт устанавливает общие методические положения по определению энергоемкости производства продукции и оказания услуг, с учетом энергосбережения, экологической безопасности, и распространяется на любые технологические энергетические системы, включая рабочие технологические процессы (Р 50—54—93), связанные с производством продукции и оказанием (исполнением, предоставлением) материальных услуг (ГОСТ 30335/ГОСТ Р 50646).

Стандарт не распространяется на объекты и технологические процессы военной техники, а также на ядерные, химические и биологические энергопотребляющие объекты и процессы.

Положения настоящего стандарта предназначены для применения, в соответствии с действующим законодательством, расположенными на территории Российской Федерации предприятиями, организациями, региональными и другими объединениями (далее — предприятия) независимо от форм собственности и подчинения, а также органами управления, имеющими прямое отношение к энергопотреблению и энергосбережению.

 

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3.1109—82 Единая система технологической документации. Термины и определения основных понятий

ГОСТ 8.395—90 Государственная система обеспечения единства измерений. Нормальные условия измерений при поверке. Общие требования

ГОСТ 12.0.003—74 Система стандартов безопасности труда. Опасные и вредные производственные факторы. Классификация

ГОСТ 14.004—83 Технологическая подготовка, производства. Термины и определения основных понятий

ГОСТ 40.9004—95/ГОСТ Р 50691—94 Модель обеспечения качества услуг

ГОСТ 13109—97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы: качества электрической энергии в системах электроснабжения общего назначения

ГОСТ 19431—84 Энергетика и электрификация. Термины и определения

ГОСТ. 27322—87 Энергобаланс промышленного предприятия. Общие положения

ГОСТ 30166—95 Ресурсосбережение. Основные положения

ГОСТ 30335—95/ГОСТ Р 50646—94 Услуги населению. Термины и определения

ГОСТ Р 8.563—96 Государственная система обеспечения единства измерений. Методики выполнения измерений

ГОСТ Р ИСО 14050—99 Управление окружающей средой. Словарь

ГОСТ Р 51379—99 Энергосбережение. Энергетический паспорт промышленного потребителя топливно-энергетических ресурсов. Основные положения. Типовые формы

ГОСТ Р 51380—99 Энергосбережение. Методы подтверждения соответствия показателей энергетической эффективности энергопотребляющей продукции их нормативным значениям. Общие требования

ГОСТ Р 51387—99 Энергосбережение. Нормативно-методическое обеспечение. Основные положения

ГОСТ Р 51388—99 Энергосбережение. Информирование потребителей об энергоэффективности изделий бытового и коммунального назначения. Общие требования

ГОСТ Р 51541—99 Энергосбережение. Энергетическая эффективность. Состав показателей. Общие положения

ГОСТ Р 51749—2001 Энергосбережение. Энергопотребляющее оборудование общепромышленного применения. Виды. Типы. Группы. Показатели энергетической эффективности. Идентификация

ПР 50.2.009—94 Государственная система обеспечения единства измерений. Порядок проведения испытаний и утверждения типа средств измерений

Р 50—54—93—88 Классификация, разработка и применение технологических процессов

 

3 Определения и сокращения

3.1 В настоящем стандарте применяют термины с соответствующими определениями, приведенными в ГОСТ 19431, ГОСТ Р 51379, ГОСТ Р 51380, ГОСТ Р 51387, ГОСТ Р 51388, ГОСТ Р 51541, [2, 6], приложении А, а также следующие:

3.1.1 продукция: Материальный продукт труда, добытый или изготовленный (выработанный) в конкретном производственном процессе и предназначенный для удовлетворения общественной или личной потребности [9].

Примечание — Конкретная продукция — модели (марки, типы) продукции, характеризующиеся определенными конструктивно-технологическими решениями и конкретными значениями показателей ее целевого (функционального) назначения [12].

 

3.1.2 топливно-энергетические ресурсы; ТЭР: По ГОСТ Р 51387.

Примечания

1 ТЭР, потребляемые в хозяйстве, становятся (являются) энерготоваром, что установлено в ИСО 13600 [7]*.

2 Виды ТЭР, как энерготоваров, установлены в аналогичном ИСО 13600 приложении Б настоящего стандарта.

__________

* Перевод ИСО 13600: 1997 находится во ВНИИКИ Госстандарта России.

 

3.1.3 вторичные топливно-энергетические ресурсы: По ГОСТ Р 51387.

3.1.4 энергия: Продукция, являющаяся средством труда для выполнения работы, оказания услуги или предметом труда для выработки энергии другого вида [9].

Примечание— Продукция, поставляемая на рынок сбыта, является товаром, т. е. энергия (энергоресурс) — это подлинный энерготовар. При этом может быть определена жесткая связь между денежными и энергетическими единицами [5].

 

3.1.5 энергоноситель: По ГОСТ Р 51387.

3.1.6 топливо: Продукция, предназначенная для выработки тепловой энергии в процессе ее сжигания [9].

3.1.7 услуга: Результат непосредственного взаимодействия исполнителя и потребителя, а также собственной деятельности исполнителя по удовлетворению потребности потребителя.

Примечание — По функциональному назначению услуги, оказываемые населению, подразделяются на материальные и социально-культурные (по ГОСТ 30335/ГОСТ Р 50646).

 

3.1.8 материальная услуга: Услуга по удовлетворению материально-бытовых потребностей потребителей услуг.

Примечания

1 Материальная услуга обеспечивает восстановление (изменение, сохранение) потребительских свойств изделий или изготовление новых изделий по заказам граждан, а также перемещение грузов и людей, создание условий для потребления. В частности, к материальным услугам могут быть отнесены бытовые услуги, связанные с ремонтом и изготовлением изделий, жилищно-коммунальные услуги, услуги общественного питания, услуги транспорта и т. д. (по ГОСТ 30335/ГОСТ Р 50646).

2 В Законе РФ [13] под услугами понимают предпринимательскую деятельность, направленную на удовлетворение потребностей других лиц, за исключением деятельности, осуществляемой на основе трудовых правоотношений.

3 Деятельность, осуществляемая на основе трудовых правоотношений, является работой.

4 Стандарты на услугу могут быть разработаны в таких областях, как стирка белья, гостиничное хозяйство, транспорт, автосервис, электросвязь, страхование, банковское дело, торговля [14]и др.

5 Услуги связи установлены в Законе РФ [15].

6 Услуги почтовой связи установлены в Законе РФ [16].

 

3.1.9 технологический процесс: По ГОСТ 3.1109.

3.1.10 технологический процесс исполнения услуги: Основная часть процесса предоставления услуги, связанная с изменением состояния объекта услуги (по ГОСТ 30335/ГОСТ Р 50646).

3.1.11 система качества: Совокупность организационной структуры, ответственности, процедур, процессов и ресурсов, обеспечивающая осуществление общего руководства качеством (по ГОСТ 40.9004/ГОСТ Р 50691).

3.1.12 обслуживание: Деятельность исполнителя при непосредственном контакте с потребителем услуги (по ГОСТ Р 50691).

3.1.13 оборудование: Необходимые технические средства для обеспечения изготовления изделий [17].

3.1.14 технологическое оборудование: По ГОСТ 3.1109.

Примечание— Орудия производства, в которых для выполнения определенной части технологического процесса размещаются материалы или заготовки, средства воздействия на них и, при необходимости, источники энергии [17].

 

3.1.15 теплотворная способность углеводородных топлив: Суммарное количество энергии, которой обладают природные углеводородные топлива, высвобождая ее в регламентированных условиях.

Примечание— Теплотворную способность топлива выражают в мегаджоулях на килограмм (МДж/кг).

 

3.1.16 норматив расхода топливно-энергетических ресурсов (технический норматив): Научно и технически обоснованная величина нормы расхода энергии (топлива), устанавливаемая в нормативной и технологической документации на конкретное изделие, характеризующая предельно допустимое значение потребления энергии (топлива) на единицу выпускаемой продукции или в регламентированных условиях использования энергетических ресурсов.

3.1.17 нормативный энергетический эквивалент: Показатель, характеризующий народнохозяйственный уровень прямых общих затрат первичной энергии или работы на единицу потребляемого (и/или сохраняемого) энергоресурса (топлива, тепловой, электрической энергии).

3.1.18 топливно-энергетический эквивалент; ТЭЭ: Показатель, характеризующий народнохозяйственный уровень прямых общих затрат первичной энергии или работы на единицу потребляемого топливно-энергетического ресурса.

3.1.19 удельная теплота сгорания (топлива): Суммарное количество энергии, высвобождаемое в регламентированных условиях сжигания топлива.

3.1.20 полная энергоемкость продукции: По ГОСТ Р 51387.

3.1.21 технологическая энергоемкость продукции: По ГОСТ Р 51387.

Примечание — В регламентированных условиях использования энергетических ресурсов.

 

3.1.22 энергосберегающая технология: По ГОСТ Р 51387.

Примечание — В регламентированных условиях использования энергетических ресурсов

 

3.1.23 основное производство: По ГОСТ 14.004.

3.1.24 вспомогательное производство: По ГОСТ 14.004.

3.1.25 энергосбережение: По ГОСТ Р 51387.

3.1.26 показатель энергосбережения: По ГОСТ Р 51541.

3.1.27 эффективное использование энергетических ресурсов: По ГОСТ Р 51541.

Примечание—В регламентированных условиях использования энергетических ресурсов.

 

3.1.28 показатель энергетической эффективности; ПЭЭ: По ГОСТ Р 51387.

3.1.29 показатель экономичности энергопотребления изделия: По ГОСТ Р 51387.

Примечание — В регламентированных условиях использования энергетических ресурсов.

 

3.1.30 возобновляемые топливно-энергетические ресурсы: По ГОСТ Р 51387.

3.1.31 окружающая среда: Внешняя среда, в которой функционирует организация, включая воздух, воду, землю, природные ресурсы, флору, фауну, человека и их взаимодействие.

Примечание—В данном контексте внешняя среда простирается от среды в пределах организации до глобальной системы (ГОСТ Р ИСО 14050).

 

3.1.33 энергетический эквивалент; ЭЭ: Затраты энергии на производство единицы материала, изделия или выполнения работы данного вида [11].

3.1.34 технологическая энергетическая система; ТЭС: Комплекс технологического оборудования, нормативно-методических и технологических документов, технологических процессов основного и вспомогательных производств, где квалифицированными кадрами используются топливно-энергетические ресурсы для преобразования сырья, веществ, материалов, комплектующих изделий в конечную продукцию с учетом мероприятий по безопасности и экологическому управлению.

Примечание— ТЭС является частью технической энергетической системы.

 

3.2 В настоящем стандарте применяют следующие сокращения:

ИСО — Международная организация по стандартизации;

КПД — коэффициент полезного действия;

ЛЭП — линия электропередачи;

МЭК — Международная электротехническая комиссия;

ОЦЭЗ — общецеховые затраты;

ОПФ — основные производственные фонды;

ПЭЭ — показатель(и) энергетической эффективности;

ТП — технологический процесс;

ТЭР — топливно-энергетические ресурсы;

ТЭС — технологическая энергетическая система;

ТЭЦ — теплоэлектроцентраль;

ФЭП — функционально-экологическое проектирование.

 

4 Общие положения

4.1 Основные принципы энергосберегающей политики при осуществлении хозяйственной деятельности, в том числе в технологических энергетических системах, установлены в Статье 4 Закона РФ «Об энергосбережении» и ГОСТ Р 51387.

4.2 Настоящий стандарт применяют для определения, описания, анализа и сравнения технологической энергоемкости при производстве продукции и оказании услуг в технологических энергетических системах в целях обеспечения единой методической основы энергетического выбора при принятии хозяйственных решений любого уровня [7].

4.3 Номенклатуру и значения показателей технологической энергоемкости производства продукции (веществ, материалов, комплектующих изделий, оборудования) выбирают в соответствии с разделом 7 ГОСТ Р 51541 и устанавливают в удельной форме, как правило, в стандартах предприятия и в документации на конкретные технологические процессы.

4.4 Показатели технологической энергоемкости оказания материальных услуг устанавливают в удельной форме в договорах, контрактах и другой документации на услуги с учетом раздела 7 ГОСТ Р 51541.

4.5 Удельный показатель технологической энергоемкости производства продукции и оказания услуги формируется, как правило, под воздействием ресурсно-экономических, технологических, экологических и социальных аспектов деятельности с учетом значений показателей, выраженных, например, в денежном эквиваленте, включая затраты на:

а) используемые топливно-энергетические ресурсы;

б) технологические процессы преобразования сырья, веществ, материалов, комплектующих изделий в конечную продукцию;

в) мероприятия по охране окружающей среды и экологическому управлению;

г) обучение и повышение квалификации кадров, от которых зависят затраты на мероприятия по энергосбережению на рабочих местах и обеспечение безопасности труда.

4.6 В полную энергоемкость технологических процессов основных и вспомогательных производств включают затраты энергоресурсов на хранение, преобразование веществ, материалов, комплектующих изделий, с использованием транспортных средств, для производства продукции и оказания услуг.

4.7 Технология, обеспечивающая наименьшую полную энергоемкость конечных видов продукции и услуг при нормированных удельных энергозатратах на производство продукции, является более энергоэффективной.

 

5 Место современной технологической энергетической системы в техно-и биосфере

5.1 Современная технологическая энергетическая система (далее — ТЭС) любого уровня (от индивидуального хозяйства до государственного предприятия) реализуется с учетом международных «Требований общества», подвергнутых на рисунке 5.1 «рамочной» структуризации с помощью четырех аспектов деятельности [18]: производственно-технологических, экологических, социальных и ресурсных, установленных на основе принципов, приведенных в приложении Б ГОСТ Р 51387, и с учетом [20, 21—24].

5.2 Каждая ТЭС определяет эффективность функционирования технической энерготехнической системы более высокого уровня, влияющей, в свою очередь, на облик техносферы и качество биосферы [7].

5.3 Облик техносферы в условиях энергосбережения определяют:

- развитая ресурсосфера как инфраструктура деятельности в техносфере, основанная на добыче первичных энергетических ресурсов и пополнении их запасов за счет вторичных ресурсов, использовании возобновляемых ТЭР на основе нетрадиционных источников (солнечной и ветровой энергии, энергии морских приливов, биомассы и др.);

- энергетическая и экономическая эффективность основных и вспомогательных производств как базы для формирования качественной и безопасной среды для производства товаров (далее — товаросферы) в направлениях технически устойчивого и экологически чистого развития [25].

5.3.1 В состав ресурсосферы входят первичные природные материальные и энергетические ресурсы гео-, гидро- и астросферы, согласно [7], и вторичные материальные и энергетические ресурсы, получаемые из отходов, сбросов и выбросов.

5.4 Поддержанию качества биосферы [7] в условиях энергосбережения способствуют:

- обеспечение правово-нормативных условий поддержания жизнеспособности атмосферы;

- соблюдение требований безопасности развития социумов с поддержанием достойного качества и уровня жизни людей в социосфере.

5.4.1 Человечество, образующее социосферу, рассматривается как часть биосферы согласно [7].

5.5 Ресурсосфера и товаросфера, атмосфера и социосфера образуют четыре блока обеспечения устойчивости и реализации «механизма чистого развития» [25], в «рамочном» виде представляющих прямоугольный «портрет» (информационно-графическую модель, аналогичную рисунку 5.1), пригодный для структурирования исходных данных при стратегическом оценивании энергетического объекта и последующего принятия всесторонних энергосберегающих решений в ТЭС.

5.5.1 Ресурсные стратегии на международном уровне не охвачены единой серией стандартов в связи с тем, что меры по сбережению материальных и энергетических ресурсов устанавливают на уровне национальных и фирменных стандартов.

5.5.2 На межгосударственном и отечественном уровнях ресурсные аспекты охвачены межгосударственными стандартами и комплексами российских стандартов «Ресурсосбережение» (ГОСТ 30166), «Энергосбережение» (ГОСТ Р 51387).

5.5.3 Производственные аспекты на международном и отечественном уровнях стандартизованы ИСО серии 9000 (и соответствующими ГОСТ Р ИСО серии 9000) для систем качества.

5.5.4 Экологические аспекты на международном и отечественном уровнях стандартизованы ИСО серии 14000 (и соответствующими ГОСТ Р ИСО серии 14000) для систем управления защитой окружающей среды.

5.5.5 Социальные аспекты охватываются на международном уровне стандартом SA 8000—97, описанном в [26]. Социальными стандартами являются традиционные национальные, географические, личные и иные изустные и документированные установления (правила-ограничения), которые позволяют социуму любого размера существовать с поддержанием на первом этапе достойного уровня жизни (выражаемого в денежных единицах), на втором — стабильности жизни, на третьем — справедливости отношений, на четвертом — устойчивого и чистого развития, на пятом — гармонии развития).

5.6 При определении технологической энергоемкости производимой продукции и оказываемых услуг в ТЭС различных степеней сложности, уровней применения и назначений используют одновременно четыре аспекта (блока) деятельности (5.1, 5.5).

5.7 Общесистемные составляющие технологической энергоемкости производимых видов продукции и оказываемых услуг представлены на рисунке А.1, развивающем и уточняющем основные концептуальные положения и графические модели ИСО 13600 [7].

5.8 В настоящем стандарте принято условие [7], согласно которому изделия, являющиеся выходом одной ТЭС, используются как вход в другие ТЭС для производства продукции и оказания услуг.

5.9 Образуемые в ТЭС отходы, сбросы и выбросы подлежат ликвидации с утилизацией техногенной (инертной) части и удалением опасной части путем захоронения и/или уничтожения.

5.10 Процессы ликвидации отходов, сбросов и выбросов должны также сопровождаться энергосберегающими мероприятиями с обеспечением требований экобезопасности.

 

6 Основные элементы методики определения энергоемкости производства продукции и оказания услуг в технологических энергетических системах

 

6.1 Структура и смысловое наполнение элементов методики определения энергоемкости в технологических энергетических системах

6.1.1 Методика включает следующие составные элементы с их наполнением конкретными положениями при каждом отдельном применении:

а) идентификация назначения (с целью обеспечения энергосбережения с учетом обязательных мер по охране окружающей среды);

б) выбор методов (аналитический, инструментальный, расчетный, экспертный, аудиторский);

в) определение основных технических средств технологической энергетической системы (номенклатура основного технологического оборудования) и средств измерений;

г) определение вспомогательных технических средств технологической энергетической системы (номенклатура вспомогательного оборудования и оснастки);

д) установление требований к квалификации кадров (обученность основам инструментального, организационно-технического и нормативно-методического обеспечения энергосбережения во взаимосвязи четырех обязательных аспектов деятельности: производственной, экологической, социальной и ресурсосберегающей);

е) установление последовательности и оценка весомости операций (процедур) выполнения работы по оценке и обеспечению технологической энергоемкости производимой продукции и оказываемых услуг;

ж) выбор конкретного алгоритма получения (в т. ч. вычисления) результатов оценки технологической энергоемкости (на основе общего алгоритма, установленного в настоящем стандарте);

и) определение порядка документирования (оформления) результатов оценки технологической энергоемкости производимой продукции и оказываемых услуг;

к) решение проблемы метрологического обеспечения (с учетом возможных, имеющих место потерь энергоресурсов в технологических процессах изготовления, хранения, транспортирования, потребления оцениваемой продукции и ее ликвидации после использования по назначению);

л) оценка эколого-технологической и социально-экономической эффективности (применительно к конкретному технологическому процессу производства продукции, исполнения услуги).

 

Атмосфера

 

 

 

П

р

 

Защита окружающей

среды

 

 

о

 

 

и

з

в

 

Надежность

 

 

Требования

общества

 

Здоровье, безопасность

 

О

б

щ

о

д

 

 

 

Другие соображения

 

 

 

 

е

с

с

 

 

 

 

 

 

 

 

т

т

 

 

в

в

а

 

Сохранение энергии и естественных ресурсов

 

о

 

 

 

Запасы природных ресурсов

                       

 

Рисунок 5.1 — Структурирование термина «Требования общества» (согласно ИСО 8402 [19]) внутри ядра информационно-графической модели стандартософии «ОКО ЗЕМНОЕ» [18, 20]

 

6.1.2 При планировании и обеспечении снижения энергоемкости технологических процессов необходимо учитывать и устранять возможные потери ТЭР, характер которых изложен в 6.2.

 

6.2 Характер возможных энергопотерь и направления их снижения на стадиях жизненного цикла продукции и исполнения услуги

6.2.1 Потери энергетических ресурсов с увеличением технологической энергоемкости продукции и услуг возможны, как правило, по ряду следующих причин:

- неправильное применение и/или недогрузка основного технологического оборудования;

- нарушение персоналом технологических регламентов производства продукции, оказания услуг и другие бесхозяйственные потери [4];

- несоответствие среды внутри производственных помещений установленным технологическим требованиям по нормальным климатическим условиям функционирования основного оборудования;

- несоблюдение требований по сертификации качества электрической энергии [27] на соответствие ГОСТ 13109;

- методические погрешности расчетов энергобалансов в соответствии с ГОСТ 27322;

- нарушение требований нормативных документов по охране окружающей среды;

- нарушение требований нормативных документов по обеспечению единства измерений и проведения испытаний согласно ПР 50.2.009;

- неквалифицированное документирование результатов оценки технологической энергоемкости;

- неиспользование или недоиспользование вторичных энергетических ресурсов.

6.2.1.1 Неправильное применение и/или недогрузка основного технологического оборудования приводят к потерям в технологических процессах, в особенности при производстве электроэнергии заданного качества [4].

6.2.1.2 Для уменьшения потерь ТЭР в технологическом цикле необходимо подавать их потребителям в строгом соответствии с действительными, а не расчетными нагрузками, что зависит от обученности (компетентности) и добросовестности обслуживающего персонала. Для уменьшения бесхозяйственности необходимо снижать потери ТЭР, скрываемые в допускаемом небалансе (погрешности) учета [4]. Эта погрешность должна быть четко установлена и подтверждена Государственным метрологическим органом в установленном порядке, т. е. бухгалтерские программы расчетов суммарной стоимости объема выпуска электроэнергии должны быть аттестованы в соответствии с ГОСТ Р 8.563 с учетом условий измерений в соответствии с ГОСТ 8.395.

6.2.1.3 К потерям от несоответствия среды внутри производственных помещений установленным технологическим требованиям по нормальным климатическим условиям функционирования основного оборудования относятся перегрузки оборудования и рост технологической энергоемкости.

6.2.1.4 Особое внимание должно быть уделено соблюдению требований к качеству электрической энергии (ГОСТ 13109) применительно к конкретным технологическим энергетическим системам, что должно подтверждаться сертификационными испытаниями.

6.2.1.5 Потери при расчетах энергобаланса ведут к снижению получения возможной эффективности использования энергетических ресурсов при существующем уровне развития техники, технологий и соблюдении требований к охране окружающей техногенной среды потребителем ТЭР (индивидуальным пользователем или юридическим лицом).

6.2.1.6 К потерям от нарушения требований нормативных документов по охране окружающей среды относятся штрафные санкции за превышение значений предельно допустимых выбросов и сбросов, предельного количества отходов, находящихся на территории предприятия, что установлено в действующих природоохранных нормативных документах и документах Госкомсанэпиднадзора России.

6.2.1.7 К потерям от нарушений метрологического характера относятся отсутствие на входе и выходе технологических энергетических систем счетчиков ТЭР, а также превышение погрешностей от заданных в технической документации у имеющихся средств измерений, в т. ч. счетчиков электрической, тепловой энергии (в т. ч. горячей воды).

6.2.1.8 К потерям из-за методических погрешностей расчетов относятся ошибки в определении [4]:

- норм выработки, потребления электроэнергии, тепловой энергии, топлива для производства продукции и оказания услуг;

- норм потерь в технологии производства электроэнергии, тепловой энергии, топлива для производства продукции и оказания услуг;

- назначенных и измеренных общих объемов использования электроэнергии, тепловой энергии, топлива для производства продукции и оказания услуг.

Примечание — Для снижения потерь ТЭР и финансовых ресурсов необходимо следить, чтобы ошибки расчетов норм выработки и технологических потерь ТЭР были равны точности инженерных расчетов и не превышали суммарно 5 %.

 

6.2.1.9 К потерям от неквалифицированного документирования результатов оценки энергоемкости относится недоучет расхода электроэнергии для собственных нужд ТЭЦ, поскольку их показания вычитаются из общего объема выпуска электроэнергии при вычислении общего коммерческого отпуска электроэнергии ТЭЦ потребителям через цепи передачи [4].

6.2.1.10 Потери от неиспользования или недоиспользования вторичных энергетических ресурсов, которые можно получить с применением современных высоких технологий, например из 1 т мусора, составляют:

- 620 кг топлива, по калорийности соответствующего 300 л мазута;

- 150 кг строительных материалов (песка, щебня, камня, измельченного стекла и др.);

- 20 кг цветных и черных металлов, с использованием которых энергоемкость вторичной продукции из них значительно снижается;

- 65 кг пластмасс;

- 100 кг макулатуры (без 20 % которой в США запрещен выпуск бумаги);

- 5 кг химических солей, используемых в промышленности и лабораториях.

 

6.3 Обобщенный алгоритм получения результатов определения (оценки) технологической энергоемкости производства продукции и исполнения услуг

6.3.1 Обобщенный алгоритм получения результатов оценки технологической энергоемкости в конкретных условиях производства продукции и исполнения услуг включает следующие процедуры:

1) определяют (качественно и в процентах) структуру энергозатрат по каждому виду выпускаемой продукции и исполняемой услуги, учитывая, в частности:

- прямые затраты в основном производстве по видам ТЭР,

- косвенные энергозатраты, включая вспомогательное производство,

- долю энергозатрат ТЭС в общезаводских расходах,

- долю затрат ТЭС в общецеховых расходах,

- отчисления на амортизацию,

- отчисления на текущий ремонт и обслуживание оборудования,

- энергозатраты на транспортирование веществ, материалов, комплектующих изделий, составных частей при изготовлении продукции, оказании услуг,

- энергозатраты на создание нормальных условий работы в производственных помещениях (освещение, отопление, обеспечение горячей водой, транспортом и другими необходимыми жизненными услугами),

- природоохранные затраты;

2) замеры и/или соответствующее выявление (на основе анализа документации) энергозатрат с последующим определением фактической технологической энергоемкости для конкретного вида продукции и услуг производят службы главного технолога с участием лабораторий и энергослужб:

- в течение суток,

- помесячно,

- поквартально,

- в течение года,

сравнивая и усредняя (суммируя при экспертных оценках) результаты с обоснованием и документированием их;

3) переводят все размерные характеристики энергозатрат в условное топливо (6.3.2);

4) технологическую энергоемкость вычисляют по отдельности для продукции, услуги каждого вида, используя, например, расчетные формулы (6.3.3) [10, 11], учитывающие ресурсозатраты (на вещества, материалы, комплектующие), энергозатраты (в т. ч. на транспортирование и хранение продукции), трудозатраты различного рода;

5) оценивают существенность влияния энергетической нагрузки технологической энергетической системы на окружающую объект среду (раздел 7) и, только если окажется необходимо, при определении энергоемкости учитывают затраты на мероприятия по охране окружающей среды (экозатраты).

6) технологическую энергоемкость продукции, услуги (Эпр,у) определяют в общем виде по формуле

(1);

7) показатель технологической энергоемкости продукции и услуги может иметь различные размерности, в общем случае принимая вид:

- энергозатраты (ГДж, МДж, кДж)/натуральные единицы по видам продукции, услуг, в частности: МДж/(кВт·ч) и/или МДж/ккал (для ТЭР), МДж/кг,

- МДж/т, МДж/1000 единиц, (МДж/м2, МДж/м3, МДж/тыс. руб. (для продукции, услуг), МДж/чел-ч, чел-ч/н.е (для услуг).

6.3.2 Для учета потребления всех видов ТЭР необходимо проводить перерасчет, ориентируясь на условное топливо.

6.3.2.1 Под условным топливом понимают топливо с теплотой сгорания 29300 кДж/кг.

6.3.2.2 Перерасчет натурального топлива на условное проводят по формуле

By = Вн · Qн / 29300.                                                      (2)

где By — количество условного топлива, кг;

Вн — количество натурального топлива, кг;

Qн — средняя теплота сгорания натурального топлива, кДж/кг.

6.3.2.3 Пересчет электрической, тепловой энергии и топлива на условное топливо должен производиться по их физическим (энергетическим) характеристикам на основании следующих соотношений [11, с.63]:

1 кг у.т. = 29,30 МДж = 7000 ккал;

1 кВт·ч = 3,6 МДж = 0,12 кг у.т.;                                                                                           (3)

1 кг дизельного топлива равен 1,45 кг у.т.

1 кг автомобильного бензина равен 1,52 кг у.т.;

1 ккал = 427 кг·м = 4,19 кДж = 1,163 Вт·ч;

1 л.с.ч = 2,65 МДж; 1 МДж = 0,278 кВт·ч.

6.3.2.4 При определении расхода автомобильного бензина (1 л на 100 км пробега) на транспортирование грузов линейные нормы увеличивают [11]:

- при работе в зимнее время в южных районах — до 5 %;

- при работе в зимнее время в северных районах — до 15 %;

- при работе в горных условиях — от 5 % до 20 %;

- на дорогах со сложным планом — до 10 %;

- в черте города — до 10 %;

- при перевозке грузов, требующих пониженной скорости, — до 10 %;

- при почасовой работе — до 10 %;

- при работе в карьерах, движении по полю — до 20 %.

6.3.3 Для определения технологической энергоемкости продукции и услуг используют аналитические выражения (4—9) (I вариант);

1) полную энергоемкость продукции или услуг (Эпр,у) в мегаджоулях на натуральные единицы (МДж/н.е.) измерения (шт., тыс. руб., часов и др.) определяют по формуле) [4]

Эпр,у = Эе + Эм + Эф + Эр + Эо,                                               (4)

где Эе — полная энергоемкость ТЭР, необходимых для производства продукции, исполнения услуг;

Эм полная энергоемкость исходных сырья, веществ, материалов, комплектующих изделий, необходимых для производства продукции, исполнения услуг;

Эф полная энергоемкость основных производственных фондов (ОПФ), амортизированных при производстве продукции, исполнении услуг;

Эр полная энергоемкость воспроизводства рабочей силы при производстве продукции, исполнении услуг;

Эо — полная энергоемкость мер по охране окружающей среды при производстве продукции, исполнении услуг.

2) Эе определяют по формуле [5]

Эе = Эn + Эy + Эr + Эи,                                                    (5)

где Эn полная энергоемкость ТЭР, расходуемых непосредственно при производстве продукции, исполнении услуг;

Эy полная энергоемкость ТЭР, расходуемых при транспортировании исходных сырья, веществ, материалов, комплектующих изделий;

Эr снижение полной энергоемкости продукции и услуг за счет использования образованных при производстве продукции и исполнении услуг горючих отходов, сбросов и выбросов;

Эи приращение полной энергоемкости, обусловленное импортом ТЭР (если он имеет место).

3) Эм определяют по формуле [6]

Эм = Эмо + Эми + Эн,                                                    (6)

где Эмо полная энергоемкость отечественных исходных сырья, веществ, материалов, комплектующих изделий, необходимых для производства одного изделия, исполнения одной услуги;

Эми — полная энергоемкость импортируемых исходных сырья, веществ, материалов, комплектующих изделий, необходимых для производства единицы продукции, исполнения одной услуги;

Эн — снижение полной энергоемкости продукции и услуг за счет использования образованных при производстве единицы продукции и исполнении одной услуги горючих отходов, сбросов и выбросов.

4) Эф определяют по формуле [7]

,                                                       (7)

где i — индекс вида ОПФ;

афi — объем i-го вида ОПФ, амортизированных при производстве продукции, оказании услуг (в размерности натуральные единицы ОПФ/н.е. для продукции или услуги);

Эфi полная энергоемкость ОПФ i-го вида (МДж/н.е. для продукции или услуги).

5) Эр определяют по формуле [8]

Эр = аз · Эз,                                                            (8)

где аз — удельные трудозатраты на производство продукции или оказание услуги, с учетом оплаты труда в отрасли, чел-ч/н.е. для продукции или услуги;

Эз полная энергоемкость трудозатрат, МДж/н.е. для продукции или услуги.

6) Эо определяют по формуле [9]

,                                                    (9)

где аоi — коэффициент образования невозвратных (в данное производство) или удаляемых опасных отходов i-го вида, т/н.е. для продукции ;или услуги;

Эоi полная энергоемкость устранения последствий отрицательного воздействия на окружающую среду 1 т невозвратных (в данное производство) или удаляемых опасных отходов i-го вида, МДж/т.

6.3.4 При определении технологической энергоемкости пищевой, сельскохозяйственной продукции, строительных конструкций, зданий и сооружений, транспортных и других услуг целесообразно использовать формулы, приведенные в методике [11] с учетом энергетических эквивалентов (II вариант определения, стандартизуемый в отраслевых документах).

6.3.5 Значения энергетических эквивалентов для ТЭР и некоторых видов металлов, материалов, сооружений, транспортных средств, а также затрат живого труда для некоторых категорий работ приведены в таблице 6.1 [11].

 

Таблица 6.1— Энергетические эквиваленты

 

Наименование объекта

Энергетический эквивалент

Энергосодержание ТЭР, Дж/кг

Топливно-энергетические ресурсы (МДж/кг)

Топливо:

 

 

- дизельное

10,0

42,7

- бензин авиационный

10.5

44,4

- бензин автомобильный

10,5

43,9

- керосин тракторный

10,0

43,9

- биогаз

36,2

Электроэнергия

8,7 МДж/(кВт·ч)

Тепловая энергия

0,0055 МДж/ккал

Продукция (МДж/кг)

Тракторы, самолеты, вертолеты

120

Сельскохозяйственные машины, сцепки

104

Продукция машиностроения

144

Кирпич

8,5

Материалы (МДж/кг)

Сталь (прокат)

45,5

Алюминий (из глинозема)

343

Медь

83,7

Цемент

7,0

Известковые материалы

3,8

Конструкции и сооружения (МДж/м2)

Бетонные конструкции

8,3

Здания и сооружения (жилые)

4810

Производственные здания

5025

Административные и культурно-бытовые здания

5662

Подсобные помещения

4180

Ограждения

383

Овощные продукты растениеводства (МДж/кг)

Картофель

8,0

Подсолнечник

5,0

Кукурузное зерно

5,0

Пшеница

6,8

Сахарная свекла

18,4

Затраты живого труда (МДж/(чел-ч) по категориям работы

Очень легкая

0,60

Легкая

0,90

Средняя

1,26

Тяжелая

1,86

Очень тяжелая

2,50

 

6.4 Формы документирования исходных данных и результатов

6.4.1 При документировании (оформлении) расчетов полной (технологической) энергоемкости продукции и услуг данные сводят в таблицы 6.2 (форма для I варианта определения) и 6.3 (форма для II варианта определения).

 

Таблица 6.2

 

Вид ТЭР, других ресурсов и показателей энергосбережения

Единицы измерения, натуральные единицы (н.е)

Затраты ресурса, н.е./т.е.

Полная энергоемкость ресурса, МДж/н.е.

Полная энергоемкость продукции, МДж/т

1

2

3

4

5

Примечания 1 В графе 1 указывают названия видов ресурсов, работ, затрат, которые определяют энергозатраты на производство продукции и исполнение услуг, а также соответствующих показателей энергосбережения.

2 В графе 2 указывают абсолютные или удельные (на единицу данного вида продукции или услуги) значения расхода названного ресурса.

3 В графе 4 указывают соответствующую величину составляющей полных энергозатрат (при заполнении графы 3 абсолютными значениями расхода ресурса) или полной энергоемкости (при заполнении графы 3 удельными значениями расхода ресурса), обусловленной затратами названного ресурса.

4 Величину полных энергозатрат (в абсолютных единицах) или полной энергоемкости продукции или услуги (в удельных единицах) или полной энергоемкости продукции или услуги (в удельных единицах) определяют как сумму всех составляющих.

5 В приложении Г приведен пример расчета технологической энергоемкости выплавки чугуна без учета затрат на охрану окружающей среды.

 

Таблица 6.3

 

Виды затрат ТЭР,

материальных ресурсов,

трудозатрат

Единицы измерения, натуральные единицы (н.е.)

Величины энергозатрат, ГДж/тыс. руб.

Структура энергозатрат, %

Примечания

Прямые затраты в основном производстве по видам ТЭР

 

 

 

 

Косвенные энергозатраты

 

 

 

 

Доля энергозатрат ТЭС в общезаводских расходах

 

 

 

 

Доля затрат ТЭС в цеховых расходах

 

 

 

 

Природоохранные

 

 

 

 

Отчисления на амортизацию

 

 

 

 

Отчисления на текущий ремонт, обслуживание оборудования

 

 

 

 

Энергозатраты на транспортирование веществ, материалов, комплектующих изделий, составных частей, при изготовлении продукции, оказании услуг

 

 

 

 

Энергозатраты на создание нормальных условий работы в производственных помещениях

 

 

 

 

Полные энергозатраты, ГДж, ккал

Полная энергоемкость ГДж/т, ГДж/тыс. руб.

 

7 Индексный метод учета влияния значительности воздействия технологической энергетической системы на окружающую среду

7.1 При производстве продукции и оказании услуг в условиях, например конкретного цеха, учитывают его прямое или косвенное влияние как технологического энергетического объекта, управляемого людьми, на окружающую среду в виде энергоэкологического индекса (Jэоc).

7.2 Общецеховые энергозатраты (ОЦЭЗ) для изготовления заданного количества продукции за месяц, квартал, год и исполнения услуги заопределенный период определяют как сумму расходов энергоресурсов на основные и вспомогательные технологические процессы, тем самым оценивая, во что обходится в энергетическом смысле выполнение, например, месячной производственной программы.

7.3 Как правило, имеет место следующий расход ТЭР на общецеховые нужды:

1) технологические процессы ( основной и вспомогательные);

2) отопление;

3) освещение;

4) вентиляция (с улавливанием выбросов);

5) кондиционирование;

6) транспортирование готовой продукции;

7) транспортирование, хранение отходов;

8) поддержание пожарной системы;

9) перекачка сточных вод;

10) хранение готовой продукции.

Примечание — Перечисления 4), 5), 7), 9) относятся к мероприятиям по охране окружающей техногенной среды.

 

7.4 Определяют за выбранный период общецеховые энергозатраты, суммируя энергозатраты по перечислениям 1) — 10):

ОЦЭЗ = Э1 + Э2 + Э3 + Э4 + Э5 + Э6 + Э7 + Э8 + Э9 + Э10.                        (10)

7.5 Определяют фактическую долю (в безразмерной «индексной» форме) затрат ТЭР на управление защитой окружающей среды по формуле

.                                             (11)

7.6 При планировании программных мероприятий по энергосбережению устанавливают контрольные цифры по оптимизации значения этого индекса.

7.7 При оценке значительности и планировании допустимости воздействий энергетической нагрузки на окружающую среду с оценкой необходимости затрат финансовых средств на плановые или экстренные экологические мероприятия целесообразно использовать следующую эмпирическую зависимость для определения показателя энергетической нагрузки технологического объекта на окружающую среду:

,                                  (12)

где КОу — класс опасности для потенциального загрязнителя (у);

М(o) — общее количество загрязнителей, потенциально могущих воздействовать на окружающую среду (классы опасности 2; 3; 4) в технологических процессах цеха;

Z — общее количество видов продукции, производимых цехом за рассматриваемый период.

7.8 Необходимо определить значения ПЭНТОос за месяц, квартал, год работы анализируемого цеха и только на этой основе принимать окончательное решение о значительности воздействия технологической энергетической системы на окружающую среду за рассматриваемые периоды.

7.9 Если соблюдается условие (12), то энергетическую нагрузку на окружающую среду за рассматриваемый период следует признать допустимой. При этом специальные положения в экологической политике дополнительно не планируют, но действующие нормативные требования необходимо строго соблюдать.

7.10 Применительно к принятому критерию (12) любое воздействие, выводящее технологическую энергетическую систему за правый предел этого неравенства, должно считаться значительным и приводить к необходимости дополнительных затрат на мероприятия по охране окружающей среды, что должно сказываться на увеличении технологической энергоемкости соответствующих видов выпускаемой продукции и оказываемых услуг.

Примечания

1 Использование числа 0,7 в качестве критериального (опорного) при принятии решений в производимых оценках согласуется с международной и зарубежной практикой, например с практикой фирмы «Вольво», соответствует юридической практике ИСО, где решение принимается при количестве голосов «за проект» не менее 70 % общего числа голосов, поданных при голосовании.

2 Этот критерий непосредственно вытекает также из анализа «функции желательности» (Харрингтона): при балльной оценке 0,7 имеет место точка перегиба «функции желательности» с необратимым сохранением позитивных изменений при оценивании свойств конкретного объекта.

3 Для экологических целей; при разработке методики комплексной оценки экологических решений используется тот же критерий [40].

 

 

ПРИЛОЖЕНИЕ А

(справочное)

 

Термины

 

А.1 Термины и определения из международного стандарта ИСО 13600

А.1.1 энергоносители: Вещество или явление, которое может быть использовано для производства механической работы или нагрева, или химических реакций, или физических процессов.

А.1.2 энерготовар: Готовый (годный к продаже, предназначенный для продажи) товар, используемый, главным образом, для производства механической работы или тепла, или химических реакций, или физических процессов и приведенный в приложении Б настоящего стандарта.

Примечания

1 Термин «energyware» может быть переведен как «энерготовар», но в русском языке он, как правило, фигурирует как «энергия» не в философском, а в чисто техническом смысле. Для целей настоящего стандарта использованы адекватные термины «энергоресурсный товар», «энергоресурсы».

2 Энерготовар формально, в собственном смысле, относится (является частью) к энергоносителям. В общественном сознании положение энергоносителей является пока подчиненным по отношению к энергии в целом.

 

А.1.3 система, расходующая энергоресурсы (система энергопотребления): Техническая энергосистема, расходующая энергетические ресурсы, а также другие энергетические носители и производящая продукцию, услуги.

А.1.4 область потребностей в энергоресурсах (энергообеспечение): Часть техносферы, цель которой — производить необходимое количество энергоресурсов и добывать природные ресурсы.

А.1.5 система производства энергоресурсов: Техническая энергосистема, которая преобразует природные ресурсы в энергоресурсы.

А.1.6 система утилизации (возврата, восстановления) энергоресурсов: Техническая энергосистема, которая трансформирует вторичные ресурсы (подлежащие возврату, возвращаемые отходы, сбросы и выбросы — биосферозагрязнители) в энергоресурсы.

А.1.7 система хранения энергоресурсов (энергонакопители): Техническая энергосистема, которая может получать и хранить энергоресурсы, освобождая их позже в том же виде.

А.1.8 нагрузка на окружающую среду: Истощение природных ресурсов, накопление отходов, сбросов и выбросов, эксплуатационные воздействия.

А.1.9 природные ресурсы: Вещества или явления, находящиеся в природе, которые могут использоваться в техносфере для потребления.

А.1.10 продукт: Преднамеренный реальный (материальный) выход (отдача) технической энергосистемы.

А.1.11 услуга: Преднамеренный и неосязаемый (неуловимый, не материальный) продукт технической энергетической системы или польза от применения продукта.

Примечание — Услуга, как правило, реализуется с участием людей (необходимое условие), хотя и не всегда при ее реализации непосредственно участвует энергосистема (достаточное условие), например при устном переводе текста с языка на язык, при обучении на воздухе (вне помещений), как это было, например в Академии Платона и т. д.

 

А.1.12 техническая энергетическая система: Комбинация оборудования и предприятия (завода), взаимодействующих друг с другом для производства, потребления или, во многих случаях, преобразования, хранения, транспортирования или обработки энерготовара (как энергоресурса).

А.1.13 техносфера: Все технические энергетические системы и продукты, производимые ими, в том состоянии, при котором они не будут считаться выбросами (см. приложение А.2).

 

А.2 Дополнительные основополагающие термины и понятия в техно- и биосфере

Для более полного понимания терминологического блока A.1 и в целом настоящего стандарта целесообразно использовать следующие термины:

А.2.1 система (греч.): Множество закономерно связанных между собой элементов (предметов, явлений, взглядов и т. д.), представляющих собой целостное образование, единство [28, с.121].

А.2.2 система открытая (традиционно): Система, состав, информация и энергия которой изменяются из-за обмена ими с внешней средой.

Примечания

1 Большинство природных систем — открытые [28, с.124].

2 В теории стандартософии [29] введено понятие «ноосферно-открытых систем», которые обмениваются веществом (в ресурсных стратегиях), энергией (в технологических стратегиях), информацией (в экологических стратегиях и действиями субъектов (в социальных стратегиях).

 

А.2.3 ноосфера: Сфера разума, мыслящая оболочка, высшая стадия развития биосферы, связанная с возникновением и развитием в ней мыслящего человечества (по В. И. Вернадскому [28]).

Примечание—В системе понятий настоящего стандарта следует говорить о ноосфере как о высшей стадии развития экосферы.

 

А.2.4 экосфера (от греч. «ойкос» — дом и сфера — шар): Абиотическая среда Земли, создающая условия для жизни.

Примечания

1 Включает в себя тропо- и гидросферы, а также верхнюю часть литосферы [28, с.98].

2 В экологии человека — среда развития хозяйства [28, с.196].

3 Экосфера фактически является понятием, включающим техно- и биосферу.

 

А.2.5 техносфера: Стратегическое пространство взаимодействия ресурсов ресурсосферы, оборудования и людей социосферы, которые в технологических процессах преобразования сырья, материалов, комплектующих изделий в данное время и в данном месте реализуют заранее поставленные цели хозяйственного развития и выпуска продукции в производственной товаросфере с условием сохранения биосферы.

А.2.6 биосфера (от греч. «биос» — жизнь и сфера — шар): Область распространения жизни на Земле, включающая в себя нижнюю часть атмосферы, всю гидросферу, верхнюю часть литосферы и являющуюся самой крупной экосистемой Земли, населенной живыми организмами («областью существования живого вещества» — по В.И. Вернадскому) [30, 21, с.8].

Примечания

1 Область обитания живых организмов: верхняя граница — до высоты озонового экрана (20—25 км), нижняя — опускается на 1—2 км ниже дна океана и в среднем 2—3 км суши [13, с.51].

2 Оболочка Земли, состав, структура и энергетика которой определяются совокупной деятельностью живых организмов [31, с.51].

3 Термин «биосфера» ввел Э. Зюсс в 1875 г. [31, с.51].

4 Заслуга создания целостного учения о биосфере принадлежит В. И Вернадскому, который изложил его в 1926 г. в книге «Биосфера» [31, с.51].

5 Структуризация понятий приведена на рисунке А. 1.

 

А.2.7 социосфера: Социальная общность людей, вступающих в различные производственные, культурные и родственные отношения друг с другом и окружающей средой.

А.2.8 ресурсосфера: Содержащиеся в Земле природные залежи полезных ископаемых, используемых для поддержания и развития цивилизации.

А.2.9 ресурсы: Любые используемые и потенциальные источники удовлетворения тех или иных потребностей общества [32].

А.2.10 система управления окружающей средой: Часть общей системы административного управления, которая включает в себя организационную структуру, планирование, ответственность, методы, процедуры, процессы и ресурсы, необходимые для разработки, внедрения, реализации, анализа и поддержания экологической политики (ГОСТ Р ИСО 14050).

А.2.11 биосферозагрязнитель; БСЗ: Электромагнитное излучение, твердые отходы, жидкие сбросы, газообразные выбросы или их сочетания, угнетающе действующие на биоестественную и техногенную среды, а также на живые организмы.

Примечания

1 В международной и отечественной практике стандартизации давно применяют термин «загрязнитель». Но в связи с тем, что загрязнения приняли глобальный характер на уровне современной техногенной действительности, целесообразно ввести понятие БСЗ (по М.Б. Плущевскому, 1998 [41, 42]).

2 Разделение БСЗ на отходы, сбросы и выбросы произведено в соответствии со Статьей 7 Закона РФ «Об охране окружающей природной среды». Расширение понятия «загрязнители» до уровня биосферы произведено в соответствии с современным состоянием и направлениями техногенеза [42, с.28].

3 Возможны радиоактивное, шумовое, психотропное и другие виды излучений (БСЗ) в результате воздействия физических, химических, биологических, психофизиологических (ГОСТ 12.0.003), радиационных опасных и вредных факторов, в том числе информационных.

4 В настоящее время инертные техногенные БСЗ, имеющие ресурсную ценность, рассматриваются в качестве «второй геологии» (по В.А. Улицкому [42]).

5 Рассматривают витаопасные (для живых организмов) и экоопасные (для окружающей среды) воздействия загрязнителей, тормозящие процессы самоочищения биосферы или вовсе лишающие ее этой возможности.

 

А.2.12 стратегическое оценивание (энергетического объекта): Экспертная оценка энергетического объекта, включая техническое решение, производство, сооружение, энерготовар, процесс, работу, услугу, с учетом четырех групп «Требований общества» [19], в соответствии с которыми на основе теории стандартософии сформирована [20] «рамочная» технология анализа ограничений от четырех обязательных блоков аспектных стратегий [29] любой деятельности, в т. ч. по энергопотреблению, энергосбережению: производственных, экологических, социальных и ресурсных (рисунок А.1), совместная, одновременно учитываемая совокупность которых определяет состоятельность, устойчивость хозяйственно-экономической, организационно-политической, познавательно-образовательной и любой иной деятельности на стадиях жизненного цикла энергетического объекта в настоящее время и в перспективе развития.

А.2.13 аспекты деятельности; аспектные стратегии стандартософии: Четыре обязательных вида деятельности, включая производственно-технологическую, технологическую, экологическую, социальную и ресурсную, обеспечивающие при одновременном учете и реализации надежность изделий, защиту окружающей среды, безопасность людей, сбережение материальных и энергетических ресурсов, что соответствует международным «Требованиям общества» 19].

Примечания

1 Дополнительно к «рамке» аспектов деятельности, в теории стандартософии учитывают четыре группы регуляторов*: энерго-транспортных, товарно-финансовых, нормативно-метрологических, информационно-управляющих (ориентирующих).

2 Стандартософия является общей теорией [35, 43] идентификации, структурирования, систематизации, нацеливания, документирования и прогнозирования проявлений субъектов при обязательных стратегических ограничениях состояния и развития явления, объекта и/или субъекта «рамочными» технологиями с учетом четырех аспектов деятельности, четырех дополнительных групп регуляторов и восьми функций документирования [18, 20].

3 Стандартософия может быть определена как стандартизованная (в прошлом и настоящем) и стандартизуемая (в будущем) мудрость, необходимая для достижения эффективных результатов, а в пределе — гармонии в любой области деятельности путем документируемого и подтверждаемого инструментального сопряжения процессов и результатов познания сущностей любых повторяющихся явлений природы и общества с деятельностью по нормативно-методическому обеспечению всех стадий жизненного цикла продукции, процессов (работ), услуг, подлежащих неоднократному воспроизведению с учетом ограничений — аспектных стратегий: производственных (Маркетинга), экологических (Ойкосинга), социальных (Социуминга), ресурсных (обеспечивающих и сберегающих — Таргетинга [43]).

4 Это целостная система «портретного» описания объекта в прямоугольной «рамке» из четырех блоков аспектных стратегий и последующего нацеливания субъекта в любой области человеческой деятельности для обоснованного нормативно-методического обеспечения качества образа жизни (духовности) и достижения (допустимого уровнем развития цивилизации и практикой общества) уровня обеспеченности жизни (материальности) людей.

5 Принципы теории стандартософии заложены в ГОСТ Р 51387 (приложение Б), а подход к структурированию — в терминологический словарь по отходам [42].

6 На основе теории стандартософии сформирован экологический императив [37].

7 Теория стандартософии поднимает стандартизацию [36] на уровень теории [43] и науки, а практика делает результаты общесистемными, логически совместимыми и значимыми в перспективе непрерывного совершенствования социумов и очищения биосферы, в т.ч. благодаря энергосбережению.

______________

*По А.В. Плотникову, 1998 [6].

 

 

 

Рисунок А.1 — Стратегическая структуризация сфер жизнедеятельности общества

 во взаимодействии техносферы с биосферой. (Модель «HOMO-STRATEGIC»

 на основе ИСО 13600 [7])

 

 

ПРИЛОЖЕНИЕ Б

(рекомендуемое)

 

Традиционные энергоресурсные продукты (энерготовары) согласно приложению А ИСО 13600

 

Б.1 Твердое топливо

 

Энергетический уголь

Весь уголь, извлеченный из земли, за исключением металлургического угля для фильтров

Энергетический торф

Торф, энергетически отличающийся от торфа, используемого для усовершенствованной почвы (грунта) или других целей

Коммерческие дрова

Щепки дерева и тырса - подэлементы коммерческих дров, используемых как энергопродукт (энерготовар)

Другая биомасса

«Энергетические» лес, солома, тростник, высушенный коровий навоз, кустарник, стручки семян, используемые в качестве топлива

Топливные брикеты и гранулы

Горючее вещество ископаемого или биологического происхождения в форме порошка, зерен (гранул) и мелкой щепы, уплотненных в блоки для механизации погрузочно-разгрузочных работ

Древесный уголь

Твердый осадок деструктивной перегонки и пиролиза дерева, кроме древесного угля для фильтров

Кокс

Твердое топливо, полученное из угля путем нагрева в отсутствие воздуха

Б.2 Жидкое топливо

 

Сырая нефть

Неизвлеченная нефть, не являющаяся энергопродуктом. Она становится энергопродуктом сразу, как только добывается (извлекается)

Нефтепродукты:

- моторный газолин

- авиационный газолин

- другой керосин

- дизельное топливо

- газойль для отопления

- топливная нефть

Могут быть приведены в группах различных энергопродуктов. Любая из отдельных жидких смесей быстроиспаряющегося углеводородного бутана и пропана

LPG (сжиженный нефтяной газ)

Пребывает в газообразном состоянии при атмосферном давлении и становится жидким при 15 °С и под низким давлением от 0,17 до 0,75 МПа

Получистые продукты

Жидкие углеводороды, включаемые в список энергопродуктов независимо от того, используются ли они для производства топлив или как нефтехимическое исходное сырье. Нефтяной кокс — не энергопродукт, даже если значительное количество используется как топливо

Моторные спирты

Этиловый спирт, метиловый спирт с добавками и смесями из составов и групп органических кислородосодержащих составов (эфиры и спирты) с легкими топливами

NGL (газоконденсатные жидкости)

Жидкие части природного газа, которые восстановлены (регенерированы) в сепараторах, шахтном оборудовании и газогенераторных установках

Топлива, производимые из растительных и животных масс

Растительные и животные масла, извлеченные из различных растений и животных

Б.3 Газообразное топливо

 

Топливо из природного газа:

 

- природный газ

Метан и газовые смеси

- LNG (сжиженный природный газ)

Природный газ, сжижаемый при низкой температуре для последующего хранения и транспортирования

Преобразование (конвертированное) газообразное топливо:

 

- газ, извлеченный из угля

Получаемый из угля

- топочный газ

- газифицированная биомасса (или биомасса в газообразном состоянии)

- газ, получаемый при перегонке (нефтезаводской [неконденсирующийся])

Получаемый из металлургического угля

- газ бытового назначения (коммунальный или городской)

Газ, производимый для общественного (коммунального) снабжения

- биогаз (биомасса)

Составленный главным образом из смеси метана и диоксида углерода, произведенной анаэробным вывариванием биомассы; метан, отделяемый вне этой смеси, назван «биометаном». Газ из жидкого навоза, болотный газ, газ от мусора (свалок) и т. д.

Б.4 Водород

 

 

В газообразной или жидкой форме, получаемый из ископаемых или возобновляемых источников

Б.5 Ядерное топливо

 

 

Уран, торий и плутоний — расщепляющиеся и воспроизводящиеся материалы (элементы)

Б.6 Сетевое электричество (или электричество энергосистемы)

 

 

Энергопродукт, произведенный в силовых установках и распределенный по общественной или подобной сети

Б.7 Коммерческое тепло, районное тепло

 

 

Горячая жидкость или пар, используемые в коммерческих тепловых распределительных системах, полученные из других энергопродуктов, возобновляемых ресурсов, включая такие, как солнечная радиация и геотермальное тепло

 

 

ПРИЛОЖЕНИЕ В

(справочное)

 

Пример определения технологической энергоемкости выплавки чугуна

 

Таблица B.1

 

Вид ТЭР, других ресурсов и показателей энергосбережения

Единицы измерения, натуральные единицы (н. е.)

Затраты ресурса, емкость (н. е./т)

Полная энергоемкость ресурса (МДж/н. е.)

Полная энергоемкость чугуна (МДж/т)

1 Энергозатраты в основном производстве

 

 

 

 

Всего

 

 

 

20099

В том числе:

 

 

 

 

1.1 кокс

кг

500

32,71

16355

1.2 природный газ

м3

110

34,0

3744

2 Энергозатраты во вспомогательном производстве

 

 

 

 

Всего

 

 

 

3461

В том числе:

 

 

 

 

2.1 котельно-печное топливо

кг у.т.

72,5

29,34

2127

2.2 электроэнергия

кВт·ч

97,2

10,68

1038

2.3 тепловая энергия

Мкал

60,0

4.93

296

3 Снижение полной энергоемкости за счет использования доменного газа

м3

-1800

4,2

-7560

4 Полная энергоемкость исходной продукции

 

 

 

 

Всего

 

 

 

5328

В том числе:

 

 

 

 

4.1 агломерат

кг

1282

3,139

4024

4.2 окатыши

кг

424

2,934

1244

4.3 руда марганцевая

кг

22

1,364

30

4.4 известняк

кг

56

0,528

30

5 Снижение полной энергоемкости за счет использования образованных негорючих отходов

 

 

 

 

Всего

 

 

 

1056

В том числе:

 

 

 

 

5.1 черных металлов

кг

-7,3

24,47

-179

5.2 гранулированного шлака

кг

-597,0

1,22

-728

5.3 щебня

кг

-200,0

0,59

-118

5.4 пемзы

кг

-35,0

0,63

-22

5.5 высокоуглеродистого клинкера

кг

-1,7

5,87

-9

6 Полная энергоемкость основных производственных фондов

 

 

 

730

7 Полная энергоемкость транспортирования исходных материалов

т-км

55

0,244

13

8 Полная энергоемкость трудозатрат

чел.-ч

38

149,0

5662

ВСЕГО

 

 

 

26677

 

 

ПРИЛОЖЕНИЕ Г

(справочное)

 

Библиография

 

[1] Федеральная целевая программа «Энергосбережение России» (1995—2000 гг.). Утверждена Постановлением Правительства РФ от 24 января 1998 г. № 80. — М.: Минтопэнерго РФ, 1998

[2] Закон РФ «Об энергосбережении» № 28-ФЗ от 3 апреля 1996 г.

[3] Безруких П.П., Пашков Е.В., Церерин Ю.А., Плущевский М.Б. Стандартизация энергопотребления — основа энергосбережения//Стандарты и качество. — 1993. — № 11

[4] Мигачев Б.С. Электроэнергия — товар № 1. Учет, качество и сбережение энергоресурсов//Контрольно-измерительные приборы и системы. — Апрель 1998; — № 2

[5] Алексеев В.В. Энерготовар и рынок//В сб. трудов «Энергосбережение в сельском хозяйстве». — М.: Изд-во ВИЭСХ, 2000. - 4.1. - С. 151

[6] Термины и определения в нормативных правовых актах Российской Федерации: Справочник./Сост. Плотников А.В., Пискова Г.К. - М.: Информпечать, 1998

[7] International Standard ISO 13600 Technical energi systems — Basic concepts. First edition 1997-11-15 (Международный стандарт ИСО 13600:1997. Энергосистемы технические. Основные понятия)

[8] Тургиев А.К., Судник Ю.А., Тебнев В.В. Функционально-экологическое проектирование энергосберегающих систему/В сб. докладов Международной научно-технической конференции «Энергосбережение в сельском хозяйстве» (5-7 октября 1998 г.). - М: Изд-во ВИЭСХ

[9] Терминология государственной системы стандартизации: Справочник. — М.: Изд-во стандартов, 1989.— С.22

[10] Документ МГС «Энергосбережение. Методика определения полной энергоемкости продукции, работ и услуг». (Технический секретариат Межгосударственного Совета по стандартизации, метрологии и сертификации № 3229 от 19 марта 1999 г.)

[11] Никифоров А.Н., Токарев В.А., Борзенков В. А., Севернев М.М., Клос В.А., Тихомиров А.В., Мурадов В.П., Маркелова Е.К. Методика энергетического анализа технологических процессов в сельскохозяйственном производстве. — М.: ВИМ, 1995

[12] РД 50-435—83 Методические указания. Порядок разработки государственных стандартов с перспективными требованиями в составе научно-исследовательских работ по определению перспектив развития групп однородной продукции. — М.: Изд-во стандартов, 1986

[13] Закон РФ «О государственном регулировании внешнеторговой деятельности» № 157-ФЗ от 13 октября 1995 г.

[14] Руководство 2 ИСО/МЭК:1996. Стандартизация и смежные виды деятельности: Общий словарь (русская версия). М.: ВНИИКИ Госстандарта России, 1998

[15] Закон РФ «О связи» № 15-ФЗ от 13 января 1995 г.

[16] Закон РФ «О почтовой связи» № 129-ФЗ от 9 августа 1995 г.

[17] Захаров Б.В., Киреев B.C., Юдин Д.Л. Толковый словарь по машиностроению. Основные термины/Под ред. A.M. Бальского. М.: Рус.яз., 1987. — С. 143

[18] Плущевский М.Б. «Око земное — образ стандартософии как науки наук XX века»//Стандарты и качество. - 1993. - № 3. - С.45

[19] ИСО 8402:1994 (E/F/R). Качество. Словарь//В сб. «ИСО 9000. Международные стандарты», 1995. — Т.2

[20] Плущевский М.Б. В защиту и в развитие стандартософии//Стандарты и качество. — 1996. — № 8. — С. 19

[21] Р 50-605-89—94. Рекомендации по стандартизации. Энергосбережение. Порядок установления показателей энергопотребления и энергосбережения в документации на продукцию и процессы. — М.: ИПК Издательство стандартов, 1996

[22] ДСТУ 2339—94. Энергосбережения. Основные положения/Разраб. Стоянова И.И., Шидловский А.К., Тонкаль В.Е., Волков И.В., Минц М.И., Плущевский М.Б., Соколовская И.С., Комаренко Е.Ю.

[23] ДСТУ 3051—95(ГОСТ 30166—95). Ресурсосбережение. Основные положения/Разраб. Тонкаль В.Ю., Стоянова И.И., Безруких П.П., Плущевский М.Б., Пашков Е.В., Рыбальченко Ю.Я., Соколовская И.С., Менделенко Б.Л., Счастливый Г.Г., Мушкало В.О.

[24] Гличев А.В., Плущевский М.Б., Федоров В.В. Универсальная методика стратегического оценивания состоятельности товаров//Стандарты и качество. — 1999. — № 11. — С.54—58

[25] Киотский протокол. Киото (Япония). Декабрь 1997 г. Конвенция Организации Объединенных Наций «Об изменении климата». Опубликовано (на русском языке) секретариатом Конвенции об изменении климата при поддержке Информационной группы для конвенций ЮНЕП. — М.: Госстандарт России, 1999

[26] Белобрагин В.Я. Социальная ответственность предприятий — новый подход к их системам управления//Стандарты и качество. — 1999. — № 5. — С. 29

[27] Федеральная энергетическая комиссия. Совместное решение Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации (Госстандарт России) и Министерства топлива и энергетики Российской Федерации (Минтопэнерго России) о порядке введения обязательной сертификации электрической энергии (выполнение постановления Правительства Российской Федерации от 13 августа 1997 г. № 1013//Вестник Главгосэнергонадзора России. — 1998. — № 3. — С.8

[28] Экология: Школьный справочник/Сост. А.П. Ошмарин, В.И. Ошмарина. — Ярославль: «Академия развития», 1998

[29] Литвиненко B.C., Плущевский М.Б., Солнцева Л.И. О формировании стратегий принятия решений в открытых системах//Стандарты и качество. — 1993. — № 8. — С.59

[30] Экологический словарь/Авт.-сост. С. Делятицкий, И. Зайонц, Л. Чертков, В. Экзарьян. — М.: Конкорд Лтд-Экопром, 1993

[31] Окружающая среда: Энциклопедический словарь-справочник: — М.: Издательская группа «Пангея», «Прогресс», 1993

[32] Популярный словарик/Авт.-сост. B.C. Рохлов, В.В. Беляев. — М.: Издательский центр «Академия» — ИЦ «Кафедра», 1997

[33] Директива Совета ЕЭС «Об отходах» (75/442/ЕЭС от 15 июля 1975 г.)

[34] Академия проблем качества. Плущевский М.Б. «Устройство Плущевского для наглядного моделирования структурного содержания проблем и стратегий их решения». (Свидетельство на полезную модель № 10921 от 12 января 1999 г.). — М.: 1999

[35] Философский энциклопедический словарь/Ред. кол.: С.С. Аверинцев, Э.А. Араб-Оглы, Л.Ф. Ильичев и др. — 2-е изд. — М.: Сов. энциклопедия. 1989. — С.428

[36] Плущевский М.Б. О подходе к развитию терминологии при нормативном обеспечении качества объектов//Стандарты и качество. — 1993. — № 2. — С.43

[37] Плущевский М.Б. Судьбу России решают качество продукции и «человек стратегический»//Стандарты и качество. — 2000. — № 10. — С.8

[38] Закон РФ «Об отходах производства и потребления» № 89-ФЗ от 24 июня 1998 г.

[39] Закон РФ «Об охране атмосферного воздуха» № 96-ФЗ от 4 мая 1999 г.

[40] Шагарова Л.Б. Разработка методики комплексной оценки экологических решений для промышленных объектов нефтегазового комплекса. Автореферат диссертации на соискание ученой степени кандидата технических наук. — М.: РГУ нефти и газа им. И.М. Губкина, 2000. — С. 16

[41] Плущевский М.Б., Улицкий В.А., Козлов А.Д. О существе разработанного впервые в мире проекта стандарта «Ресурсосбережение. Этапы технологического цикла отхода и сброса»//Сб. «Технология. Серия «Ресурсосберегающие процессы, оборудование, материалы». — М.: ВИМИ, 1998. — Вып. 1-4

[42] Терминологический словарь по отходам. Под ред. В.А. Улицкого. — М.: НИА-Природа, 2000. — С.4

[43] Карабасов Ю.С., Чижикова В.М., Плущевский М.Б. Экология и управление. Термины и определения. — М.: МИСИС, 2001

 

 

Ключевые слова: оборудование, энергосбережение, энергоемкость, методика, показатели, трудозатраты, охрана окружающей среды, тепловая энергия, электроэнергия, теплоснабжение, технологическая энергетическая система

 

 

Содержание

 

1 Область применения

2 Нормативные ссылки

3 Определения и сокращения.

4 Общие положения

5 Место современной технологической энергетической системы в техно- и биосфере

6 Основные элементы методики определения энергоемкости производства продукции и оказания услуг в технологических энергетических системах

7 Индексный метод учета влияния значительности воздействия технологической энергетической системы на окружающую среду

Приложение А Термины

А.1 Термины и определения из международного стандарта ИСО 13600

А.2 Дополнительные основополагающие термины и понятия в техно- и биосфере.

Приложение Б Традиционные энергоресурсные продукты (энерготовары) согласно приложению А ИСО 13600

Приложение В Пример определения технологической энергоемкости выплавки чугуна

Приложение Г Библиография

 

ВложениеРазмер
Р 51750-2001-Методика определения энергоемкости.doc828 КБ